HiHAT Feedback Teaser

Hierarchical Heterogeneous Asynchro

Sean Treichler, CJ Newburn
Version 170815

TOPICS

Going stateless
Resource handling
Memory abstraction and traits

Execution scopes

GOING STATELESS

State can lead to contended access that doesn’t scale. Avoid it.

Implicit state tends to not be thread safe. Avoid it.

There may be many configurations; each has its own runtime-generated handle.
Configurations a specified for each action, vs. having a “current config.”
This can lead to extra parameters: execution mode, profiling mode, scope, resources

Changing configuration may not be free; perhaps it can be changed off of the critical
path with a null action

GOING STATELESS

Stateful Stateless
set device (A); £1 () ;
f1; // on A £3(B);
f2; // on A £2 (A);
set device (B); £4 (B) ;
£f3; // on B £5(A) ;

f4; // on B

Fewer instructions
More parameters
f5; // on A Richer intermixing

set device (A);

RESOURCE ENUMERATION

Goals
What’s there - enumerate it once, avoid double coverage
How it’s connected - number and kinds and characteristics of links
Cost models - access characteristics, for unloaded and shared use
Expectations
Core set of basic enumerations of what’s there
Extended, target-specific enumeration of additional features, e.g. connectivity, costs

Enumeration informs cost models, cost models are specialized for each scheduler

RESOURCE ENUMERATION

Device and memory hierarchy

S S

-~
\»

S

S S

-~
\»

S

-
\
S;

S

00000

B)

DevKind DevHndl MemKind MemHndl

-
-

P Saminll S

(

S

A\ 4

P Saminll S

(

S

A\ 4

DevKind

RESOURCE ENUMERATION

Both one to many and many to one

\»

S

S

\»

S

\ — @

S

S

\»

S

S

\»

S

DevHndl MemKind MemHndl

RESOURCE HANDLING

hhRet hhnRegAPIImpl(// register impl of HIHAT API
Resrc2 void (*func_ptr)(void*), // function pointer
ResrcHndle resrc_hndl, // where this func ptr can execute
[] hhAPIEnum which_api); // which HiHAT API to implement

Actions (invoke, alloc, ...) are mapped to resources
Devices, memories and the subset of resources within those
Clients specify resources, runtime provides a handle
Submit action with resource handle - dispatch to implementation for that resource

Implementations get registered for relevant subsets of resources

MEMORY

Program variables are represented as DataViews

DataViews are a logical handle
Deferred materialization can overlap long-latency pinning, affinitization, etc.
Deferred allocation enables use of temporary buffers

DataViews have a memory kind, a layout and a set of traits

Declarative approach supports allocation and registration, eases retargetability

MEMORY

hhuMkMemTrait (.., HH NVM, &mem tralt nvm);
hhuMkMemTrait (.., HH HBM, &mem trailt hbm);
hhuAlloc(size, mem trait nvm, &data viewl, ..);
hhuAlloc(size, mem trait hbm, &data viewZ, ..);
size t offsetl = offset2 = 0;

hhuCopy (data view2, offset?2, data viewl, offsetl, size, ..);

cudaMempyToSymbol vs. cudaMemcpy
cudaMemcpy(dest, src, size, cudaMemcpyDeviceToHost)

MemKind: DDR, HBM, NVM, SHMEM, CONST

10

EXECUTION SCOPES

Group actions together - support aggregation and hierarchy
Not tied to lexical scope, can overlap

Enable efficiency

Enhance productivity

Support flexibility

11

