
Sean Treichler, CJ Newburn

Version 170815

HiHAT Feedback Teaser
Hierarchical Heterogeneous Asynchronous Tasking

2

TOPICS

• Going stateless

• Resource handling

• Memory abstraction and traits

• Execution scopes

3

GOING STATELESS

• State can lead to contended access that doesn’t scale. Avoid it.

• Implicit state tends to not be thread safe. Avoid it.

• There may be many configurations; each has its own runtime-generated handle.

• Configurations a specified for each action, vs. having a “current config.”

• This can lead to extra parameters: execution mode, profiling mode, scope, resources

• Changing configuration may not be free; perhaps it can be changed off of the critical
path with a null action

Principles

4

GOING STATELESS

Stateful

set_device(A);

f1; // on A

f2; // on A

set_device(B);

f3; // on B

f4; // on B

set_device(A);

f5; // on A

Example
Stateless

f1(A);

f3(B);

f2(A);

f4(B);

f5(A);

Fewer instructions
More parameters
Richer intermixing

5

RESOURCE ENUMERATION

• Goals

• What’s there – enumerate it once, avoid double coverage

• How it’s connected – number and kinds and characteristics of links

• Cost models – access characteristics, for unloaded and shared use

• Expectations

• Core set of basic enumerations of what’s there

• Extended, target-specific enumeration of additional features, e.g. connectivity, costs

• Enumeration informs cost models, cost models are specialized for each scheduler

Goals and Expectations

6
DevKind DevHndl MemKind MemHndl

RESOURCE ENUMERATION
Device and memory hierarchy

7

RESOURCE ENUMERATION
Both one to many and many to one

DevKind DevHndl MemKind MemHndl

8

RESOURCE HANDLING

• Actions (invoke, alloc, …) are mapped to resources

• Devices, memories and the subset of resources within those

• Clients specify resources, runtime provides a handle

• Submit action with resource handle dispatch to implementation for that resource

• Implementations get registered for relevant subsets of resources

Resrc1 Resrc2

hhRet hhnRegAPIImpl(// register impl of HiHAT API
void (*func_ptr)(void*), // function pointer
ResrcHndle resrc_hndl, // where this func ptr can execute
hhAPIEnum which_api); // which HiHAT API to implement

9

MEMORY

• Program variables are represented as DataViews

• DataViews are a logical handle

• Deferred materialization can overlap long-latency pinning, affinitization, etc.

• Deferred allocation enables use of temporary buffers

• DataViews have a memory kind, a layout and a set of traits

• Declarative approach supports allocation and registration, eases retargetability

DataView abstraction, with traits

10

MEMORY

hhuMkMemTrait(…, HH_NVM, &mem_trait_nvm);

hhuMkMemTrait(…, HH_HBM, &mem_trait_hbm);

hhuAlloc(size, mem_trait_nvm, &data_view1, …);

hhuAlloc(size, mem_trait_hbm, &data_view2, …);

size_t offset1 = offset2 = 0;

hhuCopy(data_view2, offset2, data_view1, offset1, size, …);

• cudaMempyToSymbol vs. cudaMemcpy

• cudaMemcpy(dest, src, size, cudaMemcpyDeviceToHost)

• MemKind: DDR, HBM, NVM, SHMEM, CONST

A declarative approach

11

EXECUTION SCOPES

• Group actions together – support aggregation and hierarchy

• Not tied to lexical scope, can overlap

• Enable efficiency

• Enhance productivity

• Support flexibility

Enable clients to communicate usage info to runtime

