
CUDA GRAPHS UPDATES, OCTOBER 2022
STEPHEN JONES, NVIDIA

EXTERNAL DEPENDENCIES VIA EVENTS & “MEMOPS” (CUDA 11.5 & 11.6)
Memops are: cuStreamWaitValue() & cuStreamWriteValue() – typically used for MPI & GPUDirect dependencies

A

D

B

C

User Op

A

D

B

C

User Op

X

W

Y

ZUser Op

In/Out Dependencies

NOT PERMITTED
WITH CUDA GRAPHS

(must split graph at B-C)

Outgoing Dependency

Launch sequence
1. launch graph
2. launch user op

Incoming Dependency

Launch sequence
1. launch user op
2. launch graph

STREAM ORDERED MEMORY ALLOCATION

void cuda_run() {

a<<< ..., stream >>>();

cudaMallocAsync(&b_ptr, N*3, stream);

b<<< ..., stream >>>(b_ptr);

cudaFreeAsync(b_ptr, stream);

c<<< ..., stream >>>();

}

async
free

async
alloc

B

C

A

STREAM ORDERED MEMORY ALLOCATION

Library_2Application

Library_1 Allocate → Use → Free

Allocate → Use → Free

Library_3 Allocate → Use → Free

STREAM ORDERED MEMORY ALLOCATION

async
free

async
alloc

B

C

A
Why allocate memory asynchronously?

- Composable (allocate where you use it instead of globally)

- Faster allocation time

- Fine-grained sharing of resources

- Smaller memory footprint through re-use within a stream

COMPOSABLE ALLOCATION

A

E

library_1 library_2

void application() {

a<<< ..., s1 >>>();

cudaEventRecord(e1, s1);

cudaStreamWaitEvent(s2, e1);

library_1(s1);

library_2(s2);

cudaEventRecord(e2, s2);

cudaStreamWaitEvent(s1, e2);

e<<< ..., stream >>>();

}

COMPOSABLE ALLOCATION

void library_1() {

cudaMallocAsync(&X, ..., s2);

cudaEventRecord(e2, s2);

cudaStreamWaitEvent(s3, e2);

b<<< ..., s2 >>>(X);

c<<< ..., s3 >>>(X);

cudaEventRecord(e3, s3);

cudaStreamWaitEvent(s2, e3);

cudaFreeAsync(X, s2);

}

void library_2() {

cudaMallocAsync(&Y, s1);

d<<< ..., stream >>>(Y);

cudaFreeAsync(Y, s1);

}

A

free
Y

free
X

alloc
Y

alloc
X

E

D(Y)B(X) C(X)

void application() {

a<<< ..., s1 >>>();

cudaEventRecord(e1, s1);

cudaStreamWaitEvent(s2, e1);

library_1(s1);

library_2(s2);

cudaEventRecord(e2, s2);

cudaStreamWaitEvent(s1, e2);

e<<< ..., stream >>>();

}

MEMORY ALLOCATION IN A TASK GRAPH (CUDA 11.4)

CUDA Graphs offers two new node types: allocate & free

Identical semantics to cudaMallocAsync() in a stream

▪ Pointer is returned at node creation time

▪ Returned pointer may be passed as arg to later nodes

▪ Using pointer is only valid downstream
of allocation node & upstream of free node

Note: You may allocate in one graph and free in another –
allocations persist between graphs until freed

A

free
Y

free
X

alloc
Y

alloc
X

E

D(Y)B(X) C(X)

NEW SEMANTICS UNIQUE TO GRAPHS

Allocation lifetime MAY extend outside the graph

Each graph receives a unique VA range

Physical memory may be reused between graphs

Edges in graphs which have memory nodes may not be modified after
creation

Allocation nodes may cause inter-graph serialization

IPC-shareability must be defined at allocation time

A

free
Y

free
X

alloc
Y

alloc
X

E

D(Y)B(X) C(X)

ALLOCATION LIFE MAY EXTEND OUTSIDE GRAPH
3 different patterns when freeing an allocation

alloc
Y

A(Y)

free
Y

B(Y)

Graph
G1

alloc
Y

A(Y)

free
Y

B(Y)

Graph
G1

Graph
G2

alloc
Y

A(Y)

cudaFreeAsync(Y)

B(Y)

Graph
G1

Allocate & free
in same graph

Allocate in one graph
free later in another

Allocate in one graph
free later via

cudaFreeAsync()

ADDRESS TRANSLATION
Virtual Addresses (VA) vs. Physical Addresses (PA)

Process A
VA range A

Process B
VA range B

HBM
HBM

Memory (DRAM)

Address Translation (MMU)

load 0x12345678 load 0x12345678

[A, 0x12345678] =
0xABC

[B, 0x12345678] =
0x123

Virtual address from process

Physical address to memory

Translate [pid, ptr] to physical

MEMORY-SPACE MANAGEMENT IN GRAPHS

Graph-specific allocation behaviours

Each graph has a unique address space (VA), set up when it is
created

Physical pages are not mapped at graph node creation – only a
placeholder address is returned

Private address ranges remain valid for lifetime of a graph, until the
graph is destroyed

Virtual & Physical Space Lifetimes Are Different

A

B X

C D

E Y

F

VA range 1
[start1 : end1]

A

B X

E Y

F

VA range 2
[start2 : end2]

A

B X

E Y

F

VA range 3
[start3 : end3]

Per-graph address ranges guarantee
pointer lifetimes have graph lifetime

SHARED PHYSICAL PAGE MAPPINGS

Virtual Address Range

Each graph has a private address range, so pointer lifetimes have
graph lifetime

Physical Pages

A single set of pages is reserved equal to the largest footprint of any
graph

VA<->PA Mapping

All graphs map to the same page set, unless executing concurrently

Goal: Reduce Physical Footprint Of Creating Lots Of Graphs

A

B X

E Y

F

VA range 2
[start2 : end2]

Shared physical
pages

A

B X

C D

E Y

F

VA range 1
[start1 : end1]

A

B X

E Y

F

VA range 3
[start3 : end3]

CUDA DYNAMIC PARALLELISM HELLO WORLD

$nvcc hello.cu –o hello_cuda
$./hello_cuda
Hello, CUDA

$

Console output

void main() {
hello<<< 1, 1 >>>();
cudaDeviceSynchronize();

}

CPU portion

__global__ void hello() {
printf(“Hello, CUDA\n”);

}
GPU portion

hello.cu

CUDA DYNAMIC PARALLELISM HELLO WORLD

$nvcc hello.cu –o hello_cuda
$./hello_cuda
Hello, CUDA

$

void main() {
hello<<< 1, 1 >>>();
cudaDeviceSynchronize();

}

__global__ void hello() {
child_hello<<< 1, 1 >>>();

}

__global__ void child_hello() {
printf(“Hello, CUDA\n”);

}

GPU portion

hello.cu

Launch a kernel

from the GPU

Console output

CPU portion

DYNAMIC PARALLELISM PROGRAMMING MODEL: ENCAPSULATION

cpu_stream

A

B

C

void main() {
cudaStream_t cpu_stream;
cudaStreamCreate(&cpu_stream);

A <<< ..., cpu_stream >>>();
B <<< ..., cpu_stream >>>();
C <<< ..., cpu_stream >>>();

cudaStreamSynchronize(cpu_stream);
}

DYNAMIC PARALLELISM PROGRAMMING MODEL: ENCAPSULATION

cpu_stream

gpu_stream
A

B

C

X

Y

void main() {
cudaStream_t cpu_stream;
cudaStreamCreate(&cpu_stream);

A <<< ..., cpu_stream >>>();
B <<< ..., cpu_stream >>>();
C <<< ..., cpu_stream >>>();

cudaStreamSynchronize(cpu_stream);
}

__global__ void B() {
cudaStream_t gpu_stream;
cudaStreamCreateWithFlags(&gpu_stream,

cudaStreamNonBlocking);

X <<< ..., gpu_stream >>>();
Y <<< ..., gpu_stream >>>();

do_something();
}

DYNAMIC PARALLELISM PROGRAMMING MODEL: ENCAPSULATION

cpu_stream

gpu_stream
A

B

C

X

Y

Encapsulation boundary

All launches from B just look

like part of B from the outside

void main() {
cudaStream_t cpu_stream;
cudaStreamCreate(&cpu_stream);

A <<< ..., cpu_stream >>>();
B <<< ..., cpu_stream >>>();
C <<< ..., cpu_stream >>>();

cudaStreamSynchronize(cpu_stream);
}

__global__ void B() {
cudaStream_t gpu_stream;
cudaStreamCreateWithFlags(&gpu_stream,

cudaStreamNonBlocking);

X <<< ..., gpu_stream >>>();
Y <<< ..., gpu_stream >>>();

do_something();
}

NAMED STREAMS

__global__ void B() {
X <<< ..., cudaStreamPerThread >>>();
Y <<< ..., cudaStreamPerThread >>>();

}

__global__ void B() {
cudaStream_t gpu_stream;
cudaStreamCreateWithFlags(&gpu_stream, cudaStreamPerThread);

X <<< ..., gpu_stream >>>();
Y <<< ..., gpu_stream >>>();

}

Previous example code using

generic stream creation

Similar code using

“named” stream

OPTIMIZING COMMON LAUNCH PATTERNS
A higher-performance, enhanced programming model using “named streams”

A

B

C

X

Y

Per-Thread stream

X & Y execute sequentially,

similar to existing stream launch

__global__ void B() {
X <<< ..., cudaStreamPerThread >>>();
Y <<< ..., cudaStreamPerThread >>>();

}

__global__ void B() {
X <<< ..., cudaStreamFireAndForget >>>();
Y <<< ..., cudaStreamFireAndForget >>>();

}

THREE NEW TYPES OF DEVICE-SIDE KERNEL LAUNCH
A higher-performance, enhanced programming model using “named streams”

A

B

C

X

Y

A

B

C

X Y

Fire-and-forget

X & Y execute independently

as if launched in separate streams

Per-Thread stream

X & Y execute sequentially,

similar to existing stream launch

__global__ void B() {
X <<< ..., cudaStreamTailLaunch >>>();
Y <<< ..., cudaStreamTailLaunch >>>();

}

THREE NEW TYPES OF DEVICE-SIDE KERNEL LAUNCH
A higher-performance, enhanced programming model using “named streams”

A

B

C

X

Y

A

B

C

X

Y

A

B

C

X Y

Tail launch

X & Y execute sequentially

after parent kernel completes

Fire-and-forget

X & Y execute independently

as if launched in separate streams

Per-Thread stream

X & Y execute sequentially,

similar to existing stream launch

THREE NEW TYPES OF DEVICE-SIDE KERNEL LAUNCH
A higher-performance, enhanced programming model using “named streams”

A

B

C

X

Y

A

B

C

X

Y

A

B

C

X Y

Tail launch

X & Y execute sequentially

after parent kernel completes

Graph launch

Can now launch whole graphs

from a GPU kernel

Fire-and-forget

X & Y execute independently

as if launched in separate streams

W

Z

X Y

A

B

C

Per-Thread stream

X & Y execute sequentially,

similar to existing stream launch

THREE NEW TYPES OF DEVICE-SIDE KERNEL LAUNCH
Encapsulation rule always applies

A

B

C

X

Y

A

B

C

X

Y

A

B

C

X Y

W

Z

X Y

A

B

C

Tail launch

X & Y execute sequentially

after parent kernel completes

Graph launch

Can now launch whole graphs

from a GPU kernel

Fire-and-forget

X & Y execute independently

as if launched in separate streams

Per-Thread stream

X & Y execute sequentially,

similar to existing stream launch

PUTTING IT ALL TOGETHER

Adaptive parallel Mandelbrot → 14% end-to-end speedup

Mariani-Silver Algorithm on 16384x16384 grid, NVIDIA A10G / GA102

22.5

7.2
6.5

0

5

10

15

20

25

With fork/join Without fork/join CPU launch

La
u

n
ch

 t
im

e
 in

 m
ic

ro
se

co
n

d
s

Dynamic Parallelism Work Creation Cost
(launch-to-execute time, NVIDIA A10G / GA102)

3x faster with
fork/join disabled &
using named streams

Adaptive Parallel Computation with CUDA Dynamic Parallelism [Technical Blog]

https://developer.nvidia.com/blog/introduction-cuda-dynamic-parallelism/

DYNAMIC PARALLEL TASK GRAPHS

CPU portion

void main() {
cudaGraphCreate(&G1);
// Build graph G1 = XYZ
cudaGraphInstantiate(G1);

cudaGraphCreate(&G2);
// Build graph G2 = ABCD
cudaGraphInstantiate(G2, DeviceLaunch);

cudaGraphLaunch(G1, ...);
}

__global__ void Y(cudaDeviceGraph_t G2) {
cudaGraphLaunch(G2, ...);

}
GPU portion

cdp_graphs.cu

Device-side graph launch

Graph G1

Graph G2

A

D

B C

X

Y

Z

ENCAPSULATION FOR DEVICE-SIDE GRAPH LAUNCH
Parent graphs are monolithic with respect to dependency resolution

Graph encapsulation boundary is the whole launching graph

Graph launch cannot create a new dependency within the parent graph (i.e. no fork/join parallelism inside a graph)

Graph

G1

Graph

G2

A

D

B C

X

Y

Z

Kernel1

Kernel2

Graph G2 becomes a

dependency of

Kernel2, not of

graph node Z

DEVICE GRAPH LAUNCH NAMED STREAMS
Identical semantics to dynamic parallelism single-kernel launch named streams, but at whole-graph granularity

Fire-and-Forget

Child work is launched

concurrently with parent

Graph G2 now depends

on G1 and child work

A

D

B C

X

Y

Graph

G1

Z

W

Graph

G2

A

D

B C

X

Y

Z

W

Tail Launch

Child work is launched

sequentially after parent

Graph G2 now depends

on child work (which in

turn depends on parent)

UPCOMING NEW LAUNCH TYPE: “SIBLING” LAUNCH
Breaks parent-graph encapsulation boundary, creating dependency on layer above

X

Y

Z

W

A

D

B C

Sibling

Child work is launched

concurrently with parent

Child work is now a

dependency of parent’s parent

void init() {
cudaGraphCreate(G1);
... // Set up graph G1

cudaGraphCreate(G2);
... // Set up graph G2

cudaGraphCreate(G3);
... // Set up graph G3

cudaGraphCreate(G4);
... // Set up graph G4

cudaGraphCreate(G5);
... // Set up graph G5

}

EXAMPLE: RUN-TIME DYNAMIC WORK SCHEDULING

G1 G2 G3 G4 G5

Create multiple graphs in host code

during program init

EXAMPLE: RUN-TIME DYNAMIC WORK SCHEDULING

__global__ void scheduler(...) {
Packet data = receivePacket(...);

switch(data.type) {
case 1:

cudaGraphLaunch(G1, ...);
break;

case 2:
cudaGraphLaunch(G2, ...);
break;

case 3:
cudaGraphLaunch(G3, ...);
break;

case 4:
cudaGraphLaunch(G4, ...);
break;

case 5:
cudaGraphLaunch(G5, ...);
break;

}

// Re-launch the scheduler to run after processing
cudaGraphLaunch(scheduler, TailLaunch, ...);

}

GPU

Incoming data packets

Select graph based

on packet type

Launch graph

to process data

Pre-initialized

device graphs

Scheduler kernel executing on device

4.5

9.9

0

2

4

6

8

10

12

Launch from Device Launch from Host

La
u

n
ch

 t
im

e
 in

 M
ic

ro
se

co
n

d
s

Graph Launch from Host and Device
(Straight-line graph, Graph length=100, RTX A5000)

THE DEVICE-LAUNCH ADVANTAGE

Scheduler kernel executing on device

2.2x

__global__ void scheduler(...) {
Packet data = receivePacket(...);

switch(data.type) {
case 1:

cudaGraphLaunch(G1, ...);
break;

case 2:
cudaGraphLaunch(G2, ...);
break;

case 3:
cudaGraphLaunch(G3, ...);
break;

case 4:
cudaGraphLaunch(G4, ...);
break;

case 5:
cudaGraphLaunch(G5, ...);
break;

}

// Re-launch the scheduler to run after processing
cudaGraphLaunch(scheduler, TailLaunch, ...);

}

4.5

9.9

0

2

4

6

8

10

12

Launch from Device Launch from Host

La
u

n
ch

 t
im

e
 in

 M
ic

ro
se

co
n

d
s

Graph Launch from Host and Device
(Straight-line graph, Graph length=100, RTX A5000)

THE DEVICE-LAUNCH ADVANTAGE

4.5 4.6 4.9 5.5
9.9

15.7

41.0

104.0

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

La
u

n
ch

 t
im

e
 in

 m
ic

ro
se

co
n

d
s

Graph concurrency / complexity

Graph Launch Cost vs. Graph Complexity
(Lower time is better, Graph length=100, RTX A5000)

Launch from Device

Launch from Host

TEMPORARY LIMITATIONS
To be removed in the future; not necessarily in the order listed here

1. You can only launch a graph from another graph; a kernel launched via <<<>>> cannot launch a graph in CUDA 12.0

2. You cannot launch the same graph twice without relaunching the parent; current design is focused on scheduler pattern

3. “Sibling” launch is not yet supported

4. Memory nodes are not yet supported in device graphs

