
CJ Newburn, Principal HPC Architect for Compute SW @ NVIDIA

HiHAT: A Way Forward to Perf Portability
with Retargetable Infrastructure

2CoE Perf Portability Workshop 8/22/17

OUTLINE

• Perspective: performance portability

• Challenges: More heterogeneity in HW platforms, SW interfaces

• Solutions: Common retargetable infrastructure - hierarchical hetero async tasking

3CoE Perf Portability Workshop 8/22/17

HETEROGENEITY AND RETARGETABILITY

• Heterogeneity within a platform

• Increasing specialization

• Host, accelerators; kinds, layers and locations of memory; interconnect

• Retargetability across platforms

• One software architecture, many targets

• And of course we want…

4CoE Perf Portability Workshop 8/22/17

PERFORMANCE PORTABILITY DEFINITION

• “Same code” + different architectures efficient performance

5CoE Perf Portability Workshop 8/22/17

PERFORMANCE PORTABILITY CONTRADICTIONS

• “Same code” + different architectures efficient performance

• Contradictions – first set

• But I like my language! The other guy’s language gives horrible performance!

• But I need a special data layout for each target!

• But I have a favorite user-level interface. Don’t take that away from me!

6

User interfaces

Target directives,

languages, DSLs

HiHAT is at the boundary

https://pixabay.com/en/hats-fedora-hat-manufacture-stack-829509/

http://www.freepik.com/free-icon/wait_871210.htm

target agnostic

target specific

7CoE Perf Portability Workshop 8/22/17

PERFORMANCE PORTABILITY PARTIAL SOLUTIONS

• “Same code” + different architectures efficient performance

• Potential solutions – first set

• Language: Target-specific task implementations where needed

• Data layout: Task implementations tailored for data layout, scheduler can choose to re-
layout data off of the critical path

• User-level interface: Layer client user-facing runtimes on top of retargetable interface

8CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

• Task: High-level language, with directives or DSL or even assembly instructions

9CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

• Pluggable implementations

• Task: High-level language, with directives or DSL or even assembly instructions

• Best way for a given platform: target-specific APIs and implementations

10CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

• Sequence of target-agnostic primitives

• Invoke, manage data, move data, coordinate, enumerate

• Pluggable implementations

• Task: High-level language, with directives or DSL or even assembly instructions

• Best way for a given platform: target-specific APIs and implementations

11CoE Perf Portability Workshop 8/22/17

PORTABILITY IS IN THE EYE OF THE BEHOLDER

• Scheduler – binding and ordering, based on cost model

• Select target, implementation, layout, add actions as needed

• Invoke primitives where and when most appropriate

• Sequence of target-agnostic primitives

• Invoke, manage data, move data, coordinate, enumerate

• Pluggable implementations

• Task: High-level language, with directives or DSL or even assembly instructions

• Best way for a given platform: target-specific APIs and implementations

12

COMMON RETARGETABLE SW ARCHITECTURE

12

Im
p

le
m

e
n

ta
ti

o
n

P

ri
m

it
iv

e
s

 O

p
e
n

s
o

u
rc

e

g
lu

e
 c

o
d

e

 H
iH

A
T

 A
P

Is

b

u
il

d
in

g

b
lo

c
k
s

Data management

Data movement

Task invocation

Data management

Data movement

Task invocation

Target-specific
dispatch

Target-specific
layout

Target-specific
coding

Im
p

le
m

e
n

ta
ti

o
n

P
ri

m
it

iv
e

s

O

p
e

n
 s

o
u

rc
e

gl
u

e
 c

o
d

e

 H
iH

A
T

A
P

Is

 b
u

ild
in

g
b

lo
ck

s

Cost
models

Scheduler

Enumeration

Cross-platform
target agnostic

Target informed

Negligible
overhead

13

MOTIVATIONS FOR A SCHEDULER

• Lack of predictability

• Where data comes from, in memory hierarchy or across network

• When computation will finish: complex algorithms, load imbalance, DVFS

• Growing complexity

• Too many factors at play to settle on a single portable static scheduler

• Too much diversity in increasingly-heterogeneous platforms

• Going asynchronous

• Break out of bulk synchronous, move to point-point

• Dynamic management of resources

13

14CoE Perf Portability Workshop 8/22/17

PROVIDING ACCESS TO PERFORMANCE

• % lines of code gains, ROI

• Exposing maximal parallelism

• Extreme scaling

• Tuning for the target platform

• Tailored abstractions

• Limited effort

• Traditional language interfaces

Meeting our customers where they are, offering a path forward

New/revised code

Old code

O
p

en
 s

o
u

rc
e

Target 1 Target 2 Target 3 Target 4

Common plumbing layer: HiHAT

Services

…

Moni-
toring

Functional building blocks

…
Comms

costs

Compute
costs

SchedViz

Transformations

…Aggre-
gate

Decom
-pose

Special-
ize

Applications and
frameworks: compilers, runtime libraries, …

https://wiki.modelado.org/Heterogeneous_Hierarchical_Asynchronous_Tasking

App developers

code

Tuners

configure

Experts

implement

16CoE Perf Portability Workshop 8/22/17

HIHAT: APIS FOR RETARGETABILITY

• Plug in target-specific implementations from below

• Implement data management, data movement, invocation, coordination, querying

• User: ease of use via abstraction

• Common: minimal overhead

HiHAT User layer

Target-specific implementation

Target-specific implementation

HiHAT thin common layer

Other

17CoE Perf Portability Workshop 8/22/17

LANGUAGE OR TASKING FRAMEWORKS

• C++ (CodePlay, IBM) Michael Wong

• Chapel (Cray), Brad Chamerlain

• Charm++ (UIUC) Ronak Buch, (Charmworks)
Phil Miller

• Darma (Sandia) Janine Bennett

• Exa-Tensor (ORNL) Wayne Joubert

• Gridtools (CSCS, Titech) Mauro Bianco

• HAGGLE (PNNL/HIVE) Antonino Tomeo

• Kokkos, Task-DAG (SNL) Carter Edwards

• Legion (Stanford/NV) Mike Bauer

• OmpSs (BSC) Jesus Labarta

• Realm (Stanford/NV) Sean Treichler

• OCR (Intel, Rice, GA Tech) Vincent Cave

• PaRSEC (UTK) George Bosilca

• Raja (LLNL) Rich Hornung

• Rambutan, UPC++ (LBL) Cy Chan

• R-Stream (Reservoir Labs) Rich Lethin

• StarPU (INRIA) Samuel Thibault

• SyCL (CodePlay) Michael Wong

• SWIFT (Durham) Matthieu Schaller

• TensorRT (NVIDIA) Dilip Sequeira

• VMD (UIUC) John Stone

Some part of each institution has expressed technical interest,

not necessarily business commitment.

Bold = shared material on mapping to HiHAT

18CoE Perf Portability Workshop 8/22/17

TABULATED RESULTS
Strong interest, modestly amenable; progress; next

Type of functionality Level of

interest

Amenability

to

refactoring

H M L H M L

Data movement – target-optimized copies, DMA, networking 15 1 1 7 5 1

Data management – kinds and layers of memory, specialized pools 11 4 2 7 4 2

Coordination – completion events, locks, queues, collectives, iteration 9 8 0 6 5 1

Compute – local or remote invocation 7 3 4 4 5 4

Enumeration – kinds/# of resources, topologies 11 5 1 4 4 3

Feedback – profiling, utilization 6 7 2 4 7 1

Tools – tracing, callbacks, pausing, debugging 3 12 2 2 7 2

19CoE Perf Portability Workshop 8/22/17

ADOPTION

• Meet requirements

• Provisioning: C ABI, library, interoperable, profiling

• Performance: enables access to perf features, low overhead supports fine granularity

• Productivity: Incremental, easy on ramp

• Open architecture

• Be a provider for tasking and language runtimes and frameworks

• Plug in implementations from below, from vendors or third parties

• Share building blocks, e.g. cost models, schedulers

• Easiest and best solution

20CoE Perf Portability Workshop 8/22/17

SO MANY FRAMEWORKS, SO LITTLE TIME

Design

Porting and performance tuning

Validation

x86 POWER
Tegra
ARM

Common plumbing layer: HiHAT

GPUs

21CoE Perf Portability Workshop 8/22/17

PROTOTYPE INFRASTRUCTURE CAPABILITIES

• Current test platform: 2 CPU sockets + 2 GPUs in one node

• Data movement

• User Layer: <dst, src, size> using logical handles for addressing

• Common Layer: use specialized flavors

• Set up comms, establish visibility as needed

• Data management

• User Layer: Allocate or register, and create address-memory resource association

• Also support tagging to clean up a set of allocations/wraps at once

• Common Layer: No tagging

• Invocation

• Register target-specific implementations, invocation with closure

• Microbenchmarks show overheads are within measurement noise

The basics are already working

22CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS (MO) APPLICATION

• Compute wavefunction amplitudes on a grid for visualization
• Evaluate linear combination of Gaussian contractions (polynomials) at

each grid point, function of distance from atoms
• Algorithm made arithmetic bound via fast on-chip memory systems
• Three different algorithms for different memory structures:

• GPU constant memory
• Shared memory tiling
• L1 global memory cache

• Representative of a variety of other grid-oriented algorithms, stencils
• Use of special GPU hardware features, APIs helped drive completeness

of HiHAT proof-of-concept implementation already at an early stage

23CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS PERFORMANCE

• Performance of MO
algorithm on HiHAT User
Layer PoC
implementation closely
tracks CUDA
performance.

• Spans x86, POWER and
Tegra ARM CPUs

24CoE Perf Portability Workshop 8/22/17

PORTABILITY ON MO
Mapping between CUDA and HiHAT

• Time to port MO: 90 minutes

• HiHAT has fewer unique APIS (6 vs. 10)

• HiHAT has fewer static API calls (30 vs. 38)

• Accelerate optimization space
exploration

• Also enhance coding productivity

25CoE Perf Portability Workshop 8/22/17

TAKE-AWAYS

• Portability comes at the scheduling layer, on top of target-agnostic primitives

• Dynamic scheduling may have the most promising path to portability and scaling

• Necessary conditions: meet requirements; be pluggable; open source approach;
be the easiest path to performance, generality and robustness

• HiHAT prototype looks promising as a retargetable infrastructure

