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Recap

 Data flow
 Data pipelining
 Persistent kernel: task loops forever until the graph is done
 One input data is enough to fire/invoke a task

 Coarse grain parallelism
 Asynchronous execution
 Compute kernels don't do state maintenance
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int main() {

  auto  myArray = std::make_shared<MYARRAY>();

  auto graph = std::make_shared<hh::Graph<void, 
MYARRAY>>("Increment Array Graph");

  auto splitVectorTask = std::make_shared<SplitVector>(1000); 

  auto batchIncrementTask = std::make_shared<BatchIncrement> 
(100, 10);  

  graph->input(splitVectorTask);

  graph->addEdge(splitVectorTask, batchIncrementTask);

  graph->output(batchIncrementTask);

  graph->executeGraph(); 

  graph->pushData(myArray);

  graph->finishPushingData();

  graph->waitForTermination();

  graph->createDotFile("Test.dot", hh::ColorScheme::EXECUTION, 
hh::StructureOptions::ALL);

}
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User Specification of Types for Nodes
Q: Why is identification of input and output nodes by 
user necessary?  Because compile time only?

 Every node is specialized by its input & output template types
 Operates on its input types

 execute(Input_1), execute(Input_2), …, execute(Input_N)
 Produces its output type

 addResult(Output)

 To instantiate a node, these templates must be defined

 This allow us to check with traits if the nodes are compatible with their 
use
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Push vs. Pull Model & Work Creation
Q: Push doesn’t preclude a pull model.  How do tasks 
create data and generate work?

 Tasks inherit from a pure abstract class, Execute

 Specialized tasks overload from Execute class:
virtual void execute(std::shared_ptr<Input>) = 0;
 This execute method is called by the task’s thread when the 

corresponding input (of type Input) is available.

 Tasks have a method:
void addResult(std::shared_ptr<TaskOutput> output)

 Explicitly called by developer in execute's implementation
 Task’s thread adds the “output” data to the queue(s) between the 

task's node and all successor node(s)
 Signal is called to awaken one thread from the successor’s threads
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Multiple output data
Q: Can a task have many out edges that get triggered prior to the completion of the 
whole task?  For example, could split vector task have let a batch increment task 
(that no longer subdivides) start working as soon as 1/10th of its work, i.e. the first 

 Asynchronous nature of Hedgehog: as soon as data is available, it begins executing
 When a task calls “addResult(data)” from its “execute” function:

1. data is inserted into the successor task’s input queue
2. Signal is called to awaken a thread from the successor’s task group
3. The successor task’s thread awakens and dequeues data and invokes its corresponding “execute”

 If a task has multiple outputs, then the data is inserted into multiple queues and signals each 
of its successor tasks

 A task in “execute” can call “addResult” multiple times to add multiple data items to out 
queues/edges

 A task starts when an input is available. On waking up, it examines all its input queues for 
available data and invokes the corresponding “execute” method

Alexandre Bardakoff, Timothy Blattner, Walid 
Keyrouz

12



Data movement
Q: Could pushData have been simply a data movement node?

 Not sure about what “data movement node” is
 The data are always wrapped in a shared_ptr
 So what is copied from a node to another is the shared_ptr

 When a task is duplicated, i.e., 
associated to multiple threads, 
all duplicated tasks are linked to the same queue

 If two tasks are linked to the same task, 
there are 2 queues, 
and the shared_ptr is put in each queue (broadcast)
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First block time / Average block time
Q: I missed the talk, but I’d be interested to know where the gap 
comes from between “first block time” and “average block time”. Is 
the first exceptional, or are all blocks slightly different times (so last 
block is faster than average)? Is this an implementation detail or an 
effect of the runtime?

 The first is exceptional because it relates to how fast the next computation can 
begin.

 Our approach relates to the underlying data pipelining approach. As soon as 
data is available, the next computation can begin.

 Average block time in our experiments relates to the production rate of blocks 
after the first one.

 This is an effect of the runtime.
 No guarantees on the rate.

Alexandre Bardakoff, Timothy Blattner, Walid 
Keyrouz

14



Termination Action/Condition
Q:  finishPushingData tells it to not expect any more data beyond 
what’s already been received, so that worker threads can quit.  
Relevant for persistent kernels.

 Exactly
 finishPushingData sends terminate to the graphs and will terminate all 

nodes in a breadth-first way
 By default, when terminate is sent, the graph waits for all inputs to be 

consumed before terminating
 Termination of a task can be customized by overloading the “canTerminate” function

 Can deal with cycles

 Signal sent to task group to check for termination, which cascades
 Only sends terminate to successor node if all threads in a group have terminated
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Dataflow representation

Q: What are the multiple conditions that could trigger 
dynamic execution, e.g. address (e.g., specific 
dependence) or generic type?  How does a 
postdominator act on a stimulus from a then or else 
clause of a preceding (runtime) conditional?

 Hedgehog is based on data flow
 Hedgehog is relying on data pipelining
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Feedback cost
Q: How is feedback “costless?”

 We gather information only at node level.
 Distributions with & w/o statistically indistinguishable.
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Group of nodes
Q: What are group nodes?  Do they relate to hierarchy? 

 Task 
 Instance is cloned forming a group of tasks

 Number of clones specified by task’s constructor
 Each task in the group is attached to its own thread

 A graph is a node
 Connected to other tasks/graphs (becomes marked as inner-graph)
 Outer graph is used by the main thread

 Execution pipeline is a task
 Owns a graph, that is duplicated
 Each duplicate graph is attached to a device (specified at Execution pipeline construction)
 Distribute data with execute function

 Pipeline Id and device Id denotes which graph to send too

Alexandre Bardakoff, Timothy Blattner, Walid 
Keyrouz

18



Graph and GPU binding
Q: “Bind a graph to a GPU”. Does this imply graphs do not span GPUs? 
Do they have external incoming/outgoing edges in order to 
synchronize with graphs on other GPUs?

 Our idea 1 Graph = 1 GPU
 If same algorithm on n GPUs  Graph duplication  Execution pipeline
 Execution pipeline will:

 Duplicate a graph and associate the graph to a GPU
 Execute for the execution pipeline can call addResult to send data to the right graph 

and its corresponding GPU
 If data need to be shared amongst different GPUs during the same algorithm

 Device Id can be stored in data, depending on boundaries for the algorithm, can be 
used to initiate copies between GPU memory addresses
 CUDA tasks can also automatically enable peer access when available
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Shutdown and GPU
Q: “Shutdown virtual method to break cycles”. This has 
implications on the underlying hardware which may introduce 
inefficiencies (for a GPU, this would be the case as upcoming 
work would not be able to be pre-fetched). A shutdown 
conditional node would solve this (i.e. prefetch disabled only for 
the successor to the shutdown node) but limits the locations 
where shutdown can occur. There are many other approaches: 
what does Hedgehog have in mind here?

 Hedgehog uses persistent kernels
 Thread is bound to a task that gets invoked multiple times based on data flow
 If the thread terminates and that task will no longer invoke

 Next slide for example from matrix multiplication

Alexandre Bardakoff, Timothy Blattner, Walid 
Keyrouz

20



HH-GEMM CUDA Graph
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Asynchronous pre-fetch
Q: My own experiments on transparent multi-GPU execution 
indicate that performance is very sensitive to data locality. Is there 
a pinning operation for the data? Do you assume the pre-fetch is 
persistent? Would data migration be beneficial at all? What is the 
granularity with which these pre-fetches can happen?

 Hedgehog by itself only provides a pool of available data. The developer 
decides how data are pre-fetched 

 No pinning by the Hedgehog library (up to the user to specify this)
 Peer access can be enabled by the CudaTask
 Structure the dataflow into the graph to maximize locality, no guarantees
 Depends on domain decomposition for granularity, done by user

 Inner vs outer product of GPU
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State management

 What does the system for 
managing state look like?

 What is per-node and 
what is system wide?

 A state Manager: 
 Is a specialized single-threaded task

 Need a state to be constructed
 State should be light-weight

 When execute is invoked:
1. Lock the state
2. Send the input data to the state
3. Gather the output data from the state
4. Unlock the state
5. Send the output data from the state to the 

rest of the graph

 No representation of global state
 State is local, only between a 

StateManager and its inputs and outputs
 Task1   StateManager  Task2
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OMP/MPI
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 Per above, how are 
triggering conditions 
specified?  Can that be 
integrated into inter-node 
comms like MPI via OMP 
tasking?

 OMP can be done within a task
 Haven’t had a need for this yet…

 MPI requires strict ordering for 
data transfers
 Hedgehog is fully asynchronous, 

so very difficult
 MPI communication can be done 

outside of the graph, but incurs 
significant overhead
 Ideally would like asynchronous MPI 

 Multi-threaded support
 Does not rely on send/receive pairs 

(send whenever data is ready)



Memory management
 Can alloc/free be visible both as a 

node in a graph and as a code 
operation inside a graph?

 Are special interfaces needed to 
make alloc/free visible to this dep 
system, especially for alloc/free in 
code inside an execution action?

 Is the same dependence system 
used to manage memory availability 
as for execution and data deps?

 Can in or out arcs regarding 
memory availability occur from/to 
the middle of an execution action?

 Is the totally memory accessible 
under admin control?

 Memory manager is a tool that the tasks use
 A node is connected to a memory manager

 Can have multiple independent memory 
managers for multiple tasks

 A memory manager is attached to a task, so 
the data is acquired in the “execute” method

 If a memory pool is empty, the task that uses 
that memory pool will wait, other tasks can 
operate as usual as long as data is available
 When memory is finished being processed it 

should be sent back from another task
 Memory manager will deal with alloc/free, and 

Node will interact with the memory manager
 There are no special interfaces as the 

alloc/free are encapsulated into memory 
manager

 No admin control
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Data as a first-class citizen

 In what ways is data 
treated as a first-class 
citizen?

 Hedgehog does 
asynchronous data flow
 Rely on data pipelining
 Schedule is based on the flow 

of data
 Data is encapsulated into 

shared_ptr
 No deep copies
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Headers only

 HiHAT’s dispatch is 
headers only for perf 
reasons

 Hedgehog is header only 
because of:
 Templates
 Perf reasons
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Compile time focus

 Burdens the user with 
identifying input and 
output nodes?

 Explicitness of nodes and 
graphs interfaces, what they 
accept and produce
 Clear model
 Helps collaboration
 Composable

 Correctness check at compile 
time
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Modern C++
 SFINAE – can be hard to 

interpret compile-time error 
messages

 HiHAT didn’t take a 
templated approach since it 
used a C ABI and wasn’t all 
header only. 

 Others (Tal Ben-Nun did, and 
Mathias Noack talked about 
it) did a shim with C++ 
templates

 Could have used traits, since 
just used at compile time

 True about SFINAE
 We just use it in the memory manager
 Future usage of C++ Concepts with C++20 

standards (little mistake on last time report)

 Traits can help having meaningful message 
with the usage of std::static_assert

hedgehog/api/../behavior/io/../../core/node/
core_graph.h:289:5: error: static_assert 
failed due to requirement 
'traits::Contains_v<MatrixBlockData<int, 'a', 
Order::Row>, 
std::__1::tuple<MatrixData<int, 'b', 
Order::Row> > >' "The given Receiver 
cannot be linked to this Sender"
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