
HiHAT - Q&A

Alexandre Bardakoff, Timothy Blattner, Walid Keyrouz
NIST | ITL | SSD | ISG

Recap

 Data flow
 Data pipelining
 Persistent kernel: task loops forever until the graph is done
 One input data is enough to fire/invoke a task

 Coarse grain parallelism
 Asynchronous execution
 Compute kernels don't do state maintenance

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

2

Data flow graph with T-types
and connected nodes

Data pipelining graph

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

3

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask = std::make_shared<BatchIncrement>
(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot", hh::ColorScheme::EXECUTION,
hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment

Task

Increment Array Graph

MYARRAY

ItBeginEnd

void

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

4

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Threads
created and

bound to tasks
Tasks running

and waiting for
data

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

5

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

6

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

7

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

8

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Thread
terminated

Explicit graphs / Hedgehog data flow

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

9

int main() {

 auto myArray = std::make_shared<MYARRAY>();

 auto graph = std::make_shared<hh::Graph<void,
MYARRAY>>("Increment Array Graph");

 auto splitVectorTask = std::make_shared<SplitVector>(1000);

 auto batchIncrementTask =
std::make_shared<BatchIncrement>(100, 10);

 graph->input(splitVectorTask);

 graph->addEdge(splitVectorTask, batchIncrementTask);

 graph->output(batchIncrementTask);

 graph->executeGraph();

 graph->pushData(myArray);

 graph->finishPushingData();

 graph->waitForTermination();

 graph->createDotFile("Test.dot",
hh::ColorScheme::EXECUTION, hh::StructureOptions::ALL);

}

Split
Vector
Task

Batch
Increment
Task 1

Increment Array Graph

MYARRAY

ItBeginEnd

void

Batch
Increment
Task 10

…

Thread
terminated

User Specification of Types for Nodes
Q: Why is identification of input and output nodes by
user necessary? Because compile time only?

 Every node is specialized by its input & output template types
 Operates on its input types

 execute(Input_1), execute(Input_2), …, execute(Input_N)
 Produces its output type

 addResult(Output)

 To instantiate a node, these templates must be defined

 This allow us to check with traits if the nodes are compatible with their
use

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

10

Push vs. Pull Model & Work Creation
Q: Push doesn’t preclude a pull model. How do tasks
create data and generate work?

 Tasks inherit from a pure abstract class, Execute

 Specialized tasks overload from Execute class:
virtual void execute(std::shared_ptr<Input>) = 0;
 This execute method is called by the task’s thread when the

corresponding input (of type Input) is available.

 Tasks have a method:
void addResult(std::shared_ptr<TaskOutput> output)

 Explicitly called by developer in execute's implementation
 Task’s thread adds the “output” data to the queue(s) between the

task's node and all successor node(s)
 Signal is called to awaken one thread from the successor’s threads

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

11

UML sequence diagram
task I/O

Multiple output data
Q: Can a task have many out edges that get triggered prior to the completion of the
whole task? For example, could split vector task have let a batch increment task
(that no longer subdivides) start working as soon as 1/10th of its work, i.e. the first

 Asynchronous nature of Hedgehog: as soon as data is available, it begins executing
 When a task calls “addResult(data)” from its “execute” function:

1. data is inserted into the successor task’s input queue
2. Signal is called to awaken a thread from the successor’s task group
3. The successor task’s thread awakens and dequeues data and invokes its corresponding “execute”

 If a task has multiple outputs, then the data is inserted into multiple queues and signals each
of its successor tasks

 A task in “execute” can call “addResult” multiple times to add multiple data items to out
queues/edges

 A task starts when an input is available. On waking up, it examines all its input queues for
available data and invokes the corresponding “execute” method

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

12

Data movement
Q: Could pushData have been simply a data movement node?

 Not sure about what “data movement node” is
 The data are always wrapped in a shared_ptr
 So what is copied from a node to another is the shared_ptr

 When a task is duplicated, i.e.,
associated to multiple threads,
all duplicated tasks are linked to the same queue

 If two tasks are linked to the same task,
there are 2 queues,
and the shared_ptr is put in each queue (broadcast)

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

13

T21 … T2
N

T1

Q

Task’s
cluster

operation
T1

T2

T3

Q1

Q2

Broadcast
operation

First block time / Average block time
Q: I missed the talk, but I’d be interested to know where the gap
comes from between “first block time” and “average block time”. Is
the first exceptional, or are all blocks slightly different times (so last
block is faster than average)? Is this an implementation detail or an
effect of the runtime?

 The first is exceptional because it relates to how fast the next computation can
begin.

 Our approach relates to the underlying data pipelining approach. As soon as
data is available, the next computation can begin.

 Average block time in our experiments relates to the production rate of blocks
after the first one.

 This is an effect of the runtime.
 No guarantees on the rate.

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

14

Termination Action/Condition
Q: finishPushingData tells it to not expect any more data beyond
what’s already been received, so that worker threads can quit.
Relevant for persistent kernels.

 Exactly
 finishPushingData sends terminate to the graphs and will terminate all

nodes in a breadth-first way
 By default, when terminate is sent, the graph waits for all inputs to be

consumed before terminating
 Termination of a task can be customized by overloading the “canTerminate” function

 Can deal with cycles

 Signal sent to task group to check for termination, which cascades
 Only sends terminate to successor node if all threads in a group have terminated

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

15

Dataflow representation

Q: What are the multiple conditions that could trigger
dynamic execution, e.g. address (e.g., specific
dependence) or generic type? How does a
postdominator act on a stimulus from a then or else
clause of a preceding (runtime) conditional?

 Hedgehog is based on data flow
 Hedgehog is relying on data pipelining

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

16

Feedback cost
Q: How is feedback “costless?”

 We gather information only at node level.
 Distributions with & w/o statistically indistinguishable.

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

17

17
03

68
6

17
06

22
6.

55

17
0876

7.
1

17
11

30
7.

65

17
13

84
8.

2

17
16

38
8.

75

171
892

9.3

17
21

46
9.

85

17
24

01
0.

4

17
2655

0.
95

17
29

09
1.

5

17
31

63
2.

05

173
417

2.6

17
36

71
3.

15

17
39

25
3.

7

17
4179

4.
25

17
44

33
4.

8

17
46

87
5.

35

17
49

41
5.

9

17
51

95
6.

46

17
54

49
7.

01

17
57

03
7.

56

17
59

57
8.

11

17
62

11
8.

66

17
64

65
9.

21

17
67

19
9.

76

17
6974

0.
31

17
72

28
0.

86

17
74

82
1.

41

17
77

36
1.

96

177
990

2.5
1

17
82

44
3.

06

17
8498

3.
61

17
87

52
4.

16

17
90

06
4.

71

17
92

60
5.

26

17
95

14
5.

81

17
97

68
6.

36

18
0022

6.
91

18
02

76
7.

46

18
05

30
8.

01

18
07

84
8.

56

181
038

9.1
1

18
12

92
9.

66

18
15

47
0.

21

18
18

01
0.

76

18
20

55
1.

31
0

5

10

15

20

25

30

35

Timer experiment for matrix multiplication of size (16k x 16k) with blocks of size (2k x 2k)

With profiling No profiling

Time bucket in microseconds

Group of nodes
Q: What are group nodes? Do they relate to hierarchy?

 Task
 Instance is cloned forming a group of tasks

 Number of clones specified by task’s constructor
 Each task in the group is attached to its own thread

 A graph is a node
 Connected to other tasks/graphs (becomes marked as inner-graph)
 Outer graph is used by the main thread

 Execution pipeline is a task
 Owns a graph, that is duplicated
 Each duplicate graph is attached to a device (specified at Execution pipeline construction)
 Distribute data with execute function

 Pipeline Id and device Id denotes which graph to send too

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

18

Graph and GPU binding
Q: “Bind a graph to a GPU”. Does this imply graphs do not span GPUs?
Do they have external incoming/outgoing edges in order to
synchronize with graphs on other GPUs?

 Our idea 1 Graph = 1 GPU
 If same algorithm on n GPUs  Graph duplication  Execution pipeline
 Execution pipeline will:

 Duplicate a graph and associate the graph to a GPU
 Execute for the execution pipeline can call addResult to send data to the right graph

and its corresponding GPU
 If data need to be shared amongst different GPUs during the same algorithm

 Device Id can be stored in data, depending on boundaries for the algorithm, can be
used to initiate copies between GPU memory addresses
 CUDA tasks can also automatically enable peer access when available

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

19

Shutdown and GPU
Q: “Shutdown virtual method to break cycles”. This has
implications on the underlying hardware which may introduce
inefficiencies (for a GPU, this would be the case as upcoming
work would not be able to be pre-fetched). A shutdown
conditional node would solve this (i.e. prefetch disabled only for
the successor to the shutdown node) but limits the locations
where shutdown can occur. There are many other approaches:
what does Hedgehog have in mind here?

 Hedgehog uses persistent kernels
 Thread is bound to a task that gets invoked multiple times based on data flow
 If the thread terminates and that task will no longer invoke

 Next slide for example from matrix multiplication

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

20

HH-GEMM CUDA Graph

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

21

Block

Prefetch-
In

A or B

Block MatMul
State

Pair GEMM Block
Addition

State
Pair Addition

Block

5
(1 stream per

thread)

2
(1 stream per

thread)

1 1 NThreads

Functionali
ty

HH Get MemA | B

Prefetch MemA | B

CPUGPU

Create Event1

Pair MemA and

MemB

(based on MatMul)

HH Get MemPartial(P)

Prefetch MemP CPUGPU

Synchronize Event1

cublasSgemm(MemP ,MemA ,

MemB)

Synchronize Stream

Recycle MemA & B

Prefetch MemP GPUCPU

Create Event2

Pair MemP with C

Decrement ttl

Synchronize

Event2

C = MemP + C

Recycle MemP

Sub-graph (1 per GPU)

Notes about cycle termination:
ttl = nBlocks^3
// number of times addition is done
// time to live

bool canTerminate() {
 return ttl == 0;
}

Asynchronous pre-fetch
Q: My own experiments on transparent multi-GPU execution
indicate that performance is very sensitive to data locality. Is there
a pinning operation for the data? Do you assume the pre-fetch is
persistent? Would data migration be beneficial at all? What is the
granularity with which these pre-fetches can happen?

 Hedgehog by itself only provides a pool of available data. The developer
decides how data are pre-fetched

 No pinning by the Hedgehog library (up to the user to specify this)
 Peer access can be enabled by the CudaTask
 Structure the dataflow into the graph to maximize locality, no guarantees
 Depends on domain decomposition for granularity, done by user

 Inner vs outer product of GPU

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

22

State management

 What does the system for
managing state look like?

 What is per-node and
what is system wide?

 A state Manager:
 Is a specialized single-threaded task

 Need a state to be constructed
 State should be light-weight

 When execute is invoked:
1. Lock the state
2. Send the input data to the state
3. Gather the output data from the state
4. Unlock the state
5. Send the output data from the state to the

rest of the graph

 No representation of global state
 State is local, only between a

StateManager and its inputs and outputs
 Task1  StateManager  Task2

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

23

OMP/MPI

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

24

 Per above, how are
triggering conditions
specified? Can that be
integrated into inter-node
comms like MPI via OMP
tasking?

 OMP can be done within a task
 Haven’t had a need for this yet…

 MPI requires strict ordering for
data transfers
 Hedgehog is fully asynchronous,

so very difficult
 MPI communication can be done

outside of the graph, but incurs
significant overhead
 Ideally would like asynchronous MPI

 Multi-threaded support
 Does not rely on send/receive pairs

(send whenever data is ready)

Memory management
 Can alloc/free be visible both as a

node in a graph and as a code
operation inside a graph?

 Are special interfaces needed to
make alloc/free visible to this dep
system, especially for alloc/free in
code inside an execution action?

 Is the same dependence system
used to manage memory availability
as for execution and data deps?

 Can in or out arcs regarding
memory availability occur from/to
the middle of an execution action?

 Is the totally memory accessible
under admin control?

 Memory manager is a tool that the tasks use
 A node is connected to a memory manager

 Can have multiple independent memory
managers for multiple tasks

 A memory manager is attached to a task, so
the data is acquired in the “execute” method

 If a memory pool is empty, the task that uses
that memory pool will wait, other tasks can
operate as usual as long as data is available
 When memory is finished being processed it

should be sent back from another task
 Memory manager will deal with alloc/free, and

Node will interact with the memory manager
 There are no special interfaces as the

alloc/free are encapsulated into memory
manager

 No admin control

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

25

Data as a first-class citizen

 In what ways is data
treated as a first-class
citizen?

 Hedgehog does
asynchronous data flow
 Rely on data pipelining
 Schedule is based on the flow

of data
 Data is encapsulated into

shared_ptr
 No deep copies

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

26

Headers only

 HiHAT’s dispatch is
headers only for perf
reasons

 Hedgehog is header only
because of:
 Templates
 Perf reasons

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

27

Compile time focus

 Burdens the user with
identifying input and
output nodes?

 Explicitness of nodes and
graphs interfaces, what they
accept and produce
 Clear model
 Helps collaboration
 Composable

 Correctness check at compile
time

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

28

Modern C++
 SFINAE – can be hard to

interpret compile-time error
messages

 HiHAT didn’t take a
templated approach since it
used a C ABI and wasn’t all
header only.

 Others (Tal Ben-Nun did, and
Mathias Noack talked about
it) did a shim with C++
templates

 Could have used traits, since
just used at compile time

 True about SFINAE
 We just use it in the memory manager
 Future usage of C++ Concepts with C++20

standards (little mistake on last time report)

 Traits can help having meaningful message
with the usage of std::static_assert

hedgehog/api/../behavior/io/../../core/node/
core_graph.h:289:5: error: static_assert
failed due to requirement
'traits::Contains_v<MatrixBlockData<int, 'a',
Order::Row>,
std::__1::tuple<MatrixData<int, 'b',
Order::Row> > >' "The given Receiver
cannot be linked to this Sender"

Alexandre Bardakoff, Timothy Blattner, Walid
Keyrouz

29

	Slide 1
	Recap
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	Explicit graphs / Hedgehog data flow
	User Specification of Types for Nodes
	Push vs. Pull Model & Work Creation
	Multiple output data
	Data movement
	First block time / Average block time
	Termination Action/Condition
	Dataflow representation
	Feedback cost
	Group of nodes
	Graph and GPU binding
	Shutdown and GPU
	HH-GEMM CUDA Graph
	Asynchronous pre-fetch
	State management
	OMP/MPI
	Memory management
	Data as a first-class citizen
	Headers only
	Compile time focus
	Modern C++

