
EXECUTORS ON CUDA GRAPHS
Jared Hoberock, March 12, 2019

2

AGENDA

Quick Executors review
Goals for project
Kernel Executor
Graph Executor
Conclusions

Diverse
Libraries

sort(...) for_each(...)

sgemm(...)

your_favorite_library_function(...)

train_network(...)

Multiplicative
Explosion

Diverse
Resources

Operating
System Threads

Thread pool
schedulers

GPU
runtime

SIMD vector
units

OpenMP
runtime

Fibers

3

Diverse
Libraries

sort(...) for_each(...)

sgemm(...)

your_favorite_library_function(...)

Uniform
Abstraction

Diverse
Resources

Operating
System Threads

Thread pool
schedulers

GPU
runtime

SIMD vector
units

OpenMP
runtime

Fibers

Executors

4

train_network(...)

5

EXECUTORS

Abstraction for creating threads*
Programmers need to control where applications execute

● Locality is critical to performance
Programmers need a uniform interface

● Dealing with multiple different execution APIs is complicated
● A single API organizes things

Like allocators for threads

6

GRAPHS EXPLORATION

Explore how to target graph runtimes (esp. CUDA Graphs) from Executors API
Explore Executors usage within a large application

● QMCPACK: Open-source quantum chemistry simulator
Explore “Senders & Receivers”

● C++ proposal for lazy execution on Executors
● wg21.link/P1194

Non-goal: Did not want to focus on the design an explicit graph abstraction

Project goals

7

PROTOTYPE

kernel_executor

● Implemented with traditional CUDA kernel launches
● Eager

graph_executor

● Implemented with CUDA graphs
● Associated ensemble of “Senders”
● Lazy

Two executors

8

kernel_executor

// a cuda_context owns resources
cuda_context ctx;

// get a CUDA stream from somewhere
cudaStream_t stream = ...

// create a kernel_executor
kernel_executor ex(ctx, stream);

// launch a kernel
ex.bulk_execute(...);

// wait for all kernels to finish
ex.wait();

Abstracts kernel launches

9

kernel_executor

grid_index shape = ...

ex.bulk_execute([] __device__ (grid_index idx, ...)
{
 int block_idx = idx[0].x;
 int thread_idx = idx[1].x;

 printf(“Hello world from thread %d in block %d\n”, thread_idx, block_idx);
},
shape,
...
);

Launching kernels

10

kernel_executor

grid_index shape = ...

ex.bulk_execute([] __device__ (grid_index idx, int& grid_shared, int& block_shared)
{
 int block_idx = idx[0].x;
 int thread_idx = idx[1].x;

 printf(“Hello world from thread %d in block %d\n”, thread_idx, block_idx);
},
shape,
[] __host__ __device__ { return 42; }, // single variable shared by all threads
[] __host__ __device__ { return 13; } // shared variable per block of threads
);

Launching kernels

11

graph_executor
Abstracts CUDA graphs

// get a CUDA stream from somewhere
cudaStream_t stream = ..

// create a graph_executor from the stream
graph_executor ex(stream);

// the root of the graph
void_sender root_node;

// make a kernel launch depend on the root
kernel_sender kernel = ex.bulk_then_execute(..., root_node);

// submit the kernel for execution
kernel.submit();

// wait for the kernel to finish
kernel.sync_wait();

12

graph_executor

Each method of graph_executor produces a different type of Sender targeting CUDA graphs
● kernel_sender ⇒ cudaGraphAddKernelNode
● copy_sender ⇒ cudaGraphAddMemcpyNode
● host_sender ⇒ cudaGraphAddHostNode

Senders represent nodes in a lazy task graph
● Mediate dependencies
● “Sends” its result down to its children

Senders are lazy
● Task description is separate from task submission

A sender factory

13

LAZY EXECUTION

Proceeds in two* stages
Description: executor.bulk_then_execute() et al.

● Interacts with Senders to lazily describe work
Submission: sender.submit()

● Traverses sender DAG and communicates work to CUDA Graphs API
● Instantiates graph
● Launches graph

Separating work description from submission

14

host_then_execute
Example executor implementation

class graph_executor {
 private:
 cudaStream_t stream() const;
 ...

 public:
 template<class Function, class Sender>
 host_sender host_then_execute(Function f, Sender& predecessor) const {
 auto node_parameters_function = [=]()
 {
 // package f into parameters for the host node
 cudaHostNodeParams result = ...

 return result;
 };

 return host_sender{stream(), node_parameters_function, std::move(predecessor)};
 }
 ...
};

15

host_sender
Example sender implementation

class host_sender {
 private:
 std::function<cudaHostNodeParams()> node_params_function_;
 any_sender predecessor_;

 ...

 protected:
 cudaGraphNode_t insert(cudaGraph_t g) const {
 // insert the predecessor
 cudaGraphNode_t predecessor_node = predecessor_.insert(g);

 // generate the node parameters
 cudaHostNodeParams node_params = node_params_function_();

 // introduce a new host node
 cudaGraphNode_t result_node{};
 cudaGraphAddHostNode(&result_node, g, &predecessor_node, 1, &node_params);

 return result_node;
 }
};

16

OVERHEAD

17

CONCLUSIONS

CUDA Graphs
● No memory management
● No deferred parameters
● Leads to out-of-band communication

Senders & Receivers
● Two-stage is awkward for systems like CUDA Graphs
● No support for replay
● Not clear how Receivers would leverage systems like CUDA Graphs

Enhancement opportunities

