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● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

– Stockholm Sweden

– academic partners & vendor co-design partners ww

● Large user base:
– 10k's academic & industry

– deployed on most HPC resources

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

https://gitlab.com/gromacs
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● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Heterogeneous parallelization by design

– for feature support/extensibility & performance 

● Portability

– broad CI testing, Linux distro integration

– regular testing on all HPC arch

● Code-base: C++17, >1M LOC
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MD Timescale challenge

Physics Chemistry

10-15 s 10-12 s 10-9 s 10-6 s 10-3 s 100 s 103 s

Biology

Simulations:

● high spatial/temporal detail

● sampling bottleneck

● model quality?

Laboratory experiments:

● lower detail

● higher efficiency

● high degree of averaging 
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Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles
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Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Biomolecular MD

time-scale challenge

strong scaling

 → latency sensitive

at scale runs out of cache

 → strong benefit from high algorithm 
arithmetic intensity (SIMD, instruction 
tuning)

Materials MD

time- & length-scale challenge

strong / weak scaling 

 → (can be) latency/BW sensitive

might run out of main memory



Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Main computate cost: calculating forces

Bonded

Non-bonded

Over all atom-pairs!
Compute force on 
each particle
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Molecular dynamics step

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F

~ millisecond or less

Goal: do it as fast as possible!

PME F Other F
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Computational costs

Pair search distance check
Non-bonded pair interactions
PME
Bonded interactions
Constraints
Other

Pair search
Nonbonded F
PME mesh
Bonded F
Update
Constraints
Other

Bonded F PME
Pair

search

MD iteration = step

Integration,
ConstraintsNon-bonded F PME F Other F

FLOPs in a typical 
simulation

Wall-time breakdown
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MD: strong scaling challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simluation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● MD codes at peak: ~100 µs / step

– <100 atoms/core at peak
– <10000 atoms / GPU
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Multiple levels of hardware parallelism

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU + many 
core GPU
caches, interconnects 

up to 512-bit vector units/core
=>
up to 16 single precison ops/clock
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Multiple levels of hardware parallelism
Multiple levels of parallelization

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU + many 
core GPU
caches, interconnects 

up to 512-bit vector units/core
=>
up to 16 single precison ops/clock
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Concurrency within an the MD step

Bonded Forces

PME Forces Integration
Constraints

Domain decomp.
Pair search

Non-bonded
pair Forces

Reduce
Forces

Other Forces

Pair-search/DD step every 50-200 iterations

MD iteration = step



Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Decomposition approaches

● Problem decomposition approaches:

– single-trajectory 

– multi-trajectory: ensemble / workflows

● Work decomposition within a simulation:

– data:
● spatial decomp (eighth shell)
● force decomp (intra-domain)

– task decomposition
● async force offload
● MPMD to reduce 3D-FFT communication
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GROMACS parallelization
Parallelism exploited on multiple levels:

SIMD / threading / NUMA / async offload / MPI
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● Hierarchical parallelization:

target each level of hw parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP

– SIMD: 14 flavors (SIMD library abstraction)

– CUDA, OpenCL
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Pair interaction kernel throughput

50

CPUs insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very 
sensitive
to input size:
fixed overheads
kernel startup
SM load 
imabalance

Strong scaling 
regime:
where most of 
our efforts go!

Benchmark “show-
off” regime:

This is where the 
“free lunch” from 
new hardware 
comes in full effect
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GROMACS Heterogeneous GPU offload
● Maintains the versatility of GROMACS

– the majority of the features supported

– “full port” to multiple toolkits/APIs not an option for a large codebase (& small team)

● Performance

– use CPU & GPU for the tasks they are best at

– flexibility for performance: adapt to CPU/GPU hw balance

● Portability and hardware support:

– CUDA, OpenCL, SYCL

– NVIDIA, AMD, Intel hardware support

● Challenges:

– flexibility vs complexity

– fast CPU code, so it is often worth using

– short time/step: 
● at peak: 200-500 us/iteration at peak (with 20-40 compute tasks/iteration)
● latency matters
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Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force 
components allows 
adjusting to hardware 
balance
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Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force 
components allows 
adjusting to hardware 
balance

● Pair seach / DD:

– complex code kept on CPUs

 → use algorithmic 
optimization to improve 
CPU—GPU overlap & 
reduce GPU idle-time
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Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search
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Other

Nonbonded F
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F

Integrate
Constr.PSCPU
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Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

Integration on the CPU

=>

CPU – GPU data movement 
needed 

Amdahl’s law:

GPUs get faster ,

CPU integration time 
increases

● Solutions:

– use force decomp & pipeline 
update (PCIe bottleneck!)

– offload integration
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GPU offload: challenges

Integration,
Constraints

Pair
search

Non-bonded F

Other

integration % 
increasing!

=>
GPU left idle

CPU

GPU

`

● Increasing % of wall-time in integration/constraints: GPU left idle

– just offload to GPU?
– Pros: good for very dense GPU setups / fast accelerators
– Cons: more GPU code to maintain, often won’t actually be faster

– allow CPU-GPU work to overlap during update too
– Pros: universal, widely useful (CPU-only too), less porting work, makes use of CPUs
– Cons: might not reach the perfect overlap in some cases

PME

Bonded F

Kernel launch cost 
● can be > than compute
● can throttle execution

`

Potential solutions:
- CPU tasking (comm/scheduler 
thread)
- CUDA graphs
- persistent kernels
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GPU resident MD steps

Pair
search / DD

Non-bonded F

Other forces
(pull, bond, etc.)CPU

GPU

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

● x/f resident on the GPU as long as possible

● Trade GPU idling for CPU idling: ideal for GPU dense architectures

● CPU supporting role (“back-offload”):

– non-offloaded per-step algorithms

– infrequent tasks (search, DD)

● Major benefits with direct communication
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Multi-node step offload & P2P GPU comm
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Multi-node step offload & P2P GPU comm
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● thread-MPI allows fully 
async comm

● Challenges:

– MPI is not ideal – does not 
allow fully async tasks

– wasting all CPU cores of a 
rank before MPI

– need comm thread 
specialization to conserve 
CPU for “other F”

– notified receiver
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Critical path optimization challenges

● Forward progress is not ensured by priority

– eager execution fills the GPU

– low-prio kernel(s) compete with high low-prio kernels
● offloading a small task for locality can hurt performance delaying a task 

on the critical path
● more priority levels may help but won’t solve the issue
● proposed solution: (conditionally) reserve GPU SMs for some tasks 

Slower GPU

Faster GPU

Competing high prio 
work and “backfill” 
low prio kernel

Competing high prio 
work and “backfill” 
low prio kernel
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Topology and affinity challenges

● intra-node

– rank to GPU mapping (not implemented)

– adapt decomposition and communication strategies to topology

● inter-node

– network topology / node mapping

– ensemble optimization
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Multi-level load balancing
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Multi-level load balancing
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● Major load balancing challenge:

– measuring wall-time of CPU+GPU work is not possible

(cudaEvents)

– need new model to estimate work based on other metrics

(flops + total time of a DD range)
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