
Heterogeneous task scheduling of
molecular dynamics in GROMACS

Szilárd Páll
pszilard@kth.se

HiHAT seminar
January 19, 2021

mailto:pszilard@kth.se

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Acknowledgments
GROMACS team

Berk Hess

Artem Zhmurov

Erik Lindahl

Paul Bauer

Mark Abraham

Magnus Lundborg

Roland Schulz

Aleksei Yupinov

Alan Gray (NVIDIA)

Gaurav Garg (NVIDIA)

Funding

HW / code contrib

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

TOC

● Introduction

● Parallelizing bio-MD

● Heterogeneous tasking in GROMACS

● Challenges

● Alan Gray:

CUDA Graphs in GROMACS

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

– Stockholm Sweden

– academic partners & vendor co-design partners ww

● Large user base:
– 10k's academic & industry

– deployed on most HPC resources

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

https://gitlab.com/gromacs

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Heterogeneous parallelization by design

– for feature support/extensibility & performance

● Portability

– broad CI testing, Linux distro integration

– regular testing on all HPC arch

● Code-base: C++17, >1M LOC

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

MD Timescale challenge

Physics Chemistry

10-15 s 10-12 s 10-9 s 10-6 s 10-3 s 100 s 103 s

Biology

Simulations:

● high spatial/temporal detail

● sampling bottleneck

● model quality?

Laboratory experiments:

● lower detail

● higher efficiency

● high degree of averaging

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Biomolecular MD

time-scale challenge

strong scaling

 → latency sensitive

at scale runs out of cache

 → strong benefit from high algorithm
arithmetic intensity (SIMD, instruction
tuning)

Materials MD

time- & length-scale challenge

strong / weak scaling

 → (can be) latency/BW sensitive

might run out of main memory

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Main computate cost: calculating forces

Bonded

Non-bonded

Over all atom-pairs!
Compute force on
each particle

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Molecular dynamics step

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F

~ millisecond or less

Goal: do it as fast as possible!

PME F Other F

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Computational costs

Pair search distance check
Non-bonded pair interactions
PME
Bonded interactions
Constraints
Other

Pair search
Nonbonded F
PME mesh
Bonded F
Update
Constraints
Other

Bonded F PME
Pair

search

MD iteration = step

Integration,
ConstraintsNon-bonded F PME F Other F

FLOPs in a typical
simulation

Wall-time breakdown

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

MD: strong scaling challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simluation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● MD codes at peak: ~100 µs / step

– <100 atoms/core at peak
– <10000 atoms / GPU

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multiple levels of hardware parallelism

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU + many
core GPU
caches, interconnects

up to 512-bit vector units/core
=>
up to 16 single precison ops/clock

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multiple levels of hardware parallelism
Multiple levels of parallelization

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU + many
core GPU
caches, interconnects

up to 512-bit vector units/core
=>
up to 16 single precison ops/clock

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Concurrency within an the MD step

Bonded Forces

PME Forces Integration
Constraints

Domain decomp.
Pair search

Non-bonded
pair Forces

Reduce
Forces

Other Forces

Pair-search/DD step every 50-200 iterations

MD iteration = step

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Decomposition approaches

● Problem decomposition approaches:

– single-trajectory

– multi-trajectory: ensemble / workflows

● Work decomposition within a simulation:

– data:
● spatial decomp (eighth shell)
● force decomp (intra-domain)

– task decomposition
● async force offload
● MPMD to reduce 3D-FFT communication

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

GROMACS parallelization
Parallelism exploited on multiple levels:

SIMD / threading / NUMA / async offload / MPI

SM
X0

SM
X1

SM
X2

SM
X3

SM
X4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

K
C

yc
le

s

SM
X0

SM
X1

SM
X2

SM
X3

SM
X4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

iz
e

lis
t s

iz
e

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regulari
zed
lists:
balance
d
executio
n

● Hierarchical parallelization:

target each level of hw parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP

– SIMD: 14 flavors (SIMD library abstraction)

– CUDA, OpenCL

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

1.5 3 6 12 24 48 96 192 384 768 1536 3072
1

10

GTX 1080 RTX 2080
RTX 2080 SUPER Quadro GP100
Quadro P6000 Tesla V100
Vega FE Radeon Mi50
i9 7920X 24T R9-3900X 24T
Xeon Gold 6148 40T

system size (x1000 atoms)

ke
rn

el
tim

e p
er

 at
om

 (n
s)

Pair interaction kernel throughput

50

CPUs insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very
sensitive
to input size:
fixed overheads
kernel startup
SM load
imabalance

Strong scaling
regime:
where most of
our efforts go!

Benchmark “show-
off” regime:

This is where the
“free lunch” from
new hardware
comes in full effect

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

GROMACS Heterogeneous GPU offload
● Maintains the versatility of GROMACS

– the majority of the features supported

– “full port” to multiple toolkits/APIs not an option for a large codebase (& small team)

● Performance

– use CPU & GPU for the tasks they are best at

– flexibility for performance: adapt to CPU/GPU hw balance

● Portability and hardware support:

– CUDA, OpenCL, SYCL

– NVIDIA, AMD, Intel hardware support

● Challenges:

– flexibility vs complexity

– fast CPU code, so it is often worth using

– short time/step:
● at peak: 200-500 us/iteration at peak (with 20-40 compute tasks/iteration)
● latency matters

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force
components allows
adjusting to hardware
balance

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force
components allows
adjusting to hardware
balance

● Pair seach / DD:

– complex code kept on CPUs

 → use algorithmic
optimization to improve
CPU—GPU overlap &
reduce GPU idle-time

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

Integration on the CPU

=>

CPU – GPU data movement
needed

Amdahl’s law:

GPUs get faster ,

CPU integration time
increases

● Solutions:

– use force decomp & pipeline
update (PCIe bottleneck!)

– offload integration

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

GPU offload: challenges

Integration,
Constraints

Pair
search

Non-bonded F

Other

integration %
increasing!

=>
GPU left idle

CPU

GPU

`

● Increasing % of wall-time in integration/constraints: GPU left idle

– just offload to GPU?
– Pros: good for very dense GPU setups / fast accelerators
– Cons: more GPU code to maintain, often won’t actually be faster

– allow CPU-GPU work to overlap during update too
– Pros: universal, widely useful (CPU-only too), less porting work, makes use of CPUs
– Cons: might not reach the perfect overlap in some cases

PME

Bonded F

Kernel launch cost
● can be > than compute
● can throttle execution

`

Potential solutions:
- CPU tasking (comm/scheduler
thread)
- CUDA graphs
- persistent kernels

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

GPU resident MD steps

Pair
search / DD

Non-bonded F

Other forces
(pull, bond, etc.)CPU

GPU

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

● x/f resident on the GPU as long as possible

● Trade GPU idling for CPU idling: ideal for GPU dense architectures

● CPU supporting role (“back-offload”):

– non-offloaded per-step algorithms

– infrequent tasks (search, DD)

● Major benefits with direct communication

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

D
2H

 L
oc

 F

Multi-node force offload

Integration
Constraints

Wait
NLoc F

Loc
PS

D
2H

 N
lo

c
F,

 E

H
2D

 L
oc

 x
,q

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 L
oc

 F

Wait
Loc F

H
2D

 N
Lo

c
x,

q

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

constraint
comm

CPU

Local
stream

Non-local
stream (high priority)GPU Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Pair-search & domain-
decomposition step

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

D
2H

 N
lo

c
F,

 E

Multi-node step offload

Wait
NLoc F

Loc
PS

H
2D

 f

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)GPU Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Conv.
Red. f

H
2D

 N
Lo

c
x,

q

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multi-node step offload & P2P GPU comm

Loc
PS

H
2D

 f

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)GPU Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Conv.
Red. fun-

pack pack

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multi-node step offload & P2P GPU comm

Loc
PS

H
2D

 f

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)GPU Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Conv.
Red. fun-

pack pack

● thread-MPI allows fully
async comm

● Challenges:

– MPI is not ideal – does not
allow fully async tasks

– wasting all CPU cores of a
rank before MPI

– need comm thread
specialization to conserve
CPU for “other F”

– notified receiver

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Critical path optimization challenges

● Forward progress is not ensured by priority

– eager execution fills the GPU

– low-prio kernel(s) compete with high low-prio kernels
● offloading a small task for locality can hurt performance delaying a task

on the critical path
● more priority levels may help but won’t solve the issue
● proposed solution: (conditionally) reserve GPU SMs for some tasks

Slower GPU

Faster GPU

Competing high prio
work and “backfill”
low prio kernel

Competing high prio
work and “backfill”
low prio kernel

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Topology and affinity challenges

● intra-node

– rank to GPU mapping (not implemented)

– adapt decomposition and communication strategies to topology

● inter-node

– network topology / node mapping

– ensemble optimization

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multi-level load balancing

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

K
C

yc
le

s

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

ize

lis
t s

ize

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regularized
lists: balanced
execution

Short-
range:
non-
bonded

Long-
range:
PME

Short-
range cut-
off 0.9 nm

Increase
cut-off
→
increase
grid
spacing

PME to PP
LJ cut-off fixed

LJ-PME

PP- PME, CPU-GPU
(static / infrequent)

Eighth shell domain-
decomposition & online
dynamic LB

GPU intra-task

balancing

(offline)

Shared under CC BY 4.0: 10.6084/m9.figshare.13607795

Multi-level load balancing

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

K
C

yc
le

s

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

ize

lis
t s

ize

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regularized
lists: balanced
execution

Short-
range:
non-
bonded

Long-
range:
PME

Short-
range cut-
off 0.9 nm

Increase
cut-off
→
increase
grid
spacing

PME to PP
LJ cut-off fixed

LJ-PME

PP- PME, CPU-GPU
(static / infrequent)

Eighth shell domain-
decomposition & online
dynamic LB

GPU intra-task

balancing

(offline)

● Major load balancing challenge:

– measuring wall-time of CPU+GPU work is not possible

(cudaEvents)

– need new model to estimate work based on other metrics

(flops + total time of a DD range)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

