
CJ Newburn, Principal HPC Architect for Compute SW @ NVIDIA

A declarative approach to managing memory

2
DoE CoE Perf Portability Workshop 8/22/17

OUTLINE

• Portability challenges

• Declarative vs. imperative

• Abstraction

• Traits

• Data views

• Enumeration

• Results

• What’s next

Part of HiHAT community project

3
DoE CoE Perf Portability Workshop 8/22/17

PORTABILITY CHALLENGES: MEMORY

• Heterogeneity of physical memory

• Device kinds: NVM, DDR, HBM, SW managed, specialized buffers

• Characteristics: speeds & feeds – asymmetry, capacity, connectivity, read only vs. writable

• Program semantics, usages

• Archival vs. scratch, temporary staging vs. enduring

• Streaming vs. random access, shared vs. exclusive/dirty

• Performance tuning

• Data layout, affinity, pinning, …

• Management: many pools, different allocation policies

Supporting ample diversity

4
DoE CoE Perf Portability Workshop 8/22/17

DECLARATIVE VS. IMPERATIVE

• Declarative

• What, not how or when or who

• Software engineering: Can be outside of computation body

• Can be abstracted, then plug in best-available implementation

• Imperative

• How, when, who

• Harder to maintain: sprinkled throughout computation

• Implementation is explicitly coded

Tease apart the roles of developer, tuner and target expert

5
DoE CoE Perf Portability Workshop 8/22/17

ABSTRACTION

• Declare

• Runtime asked to make it so - up front (may be immutable) or incrementally (mutable)

• User already made it so, just inform the runtime or other parts of the program

• Extensible, tunable

• Implementations can be plugged in for retargetability

• For every new memory resource, for every new memory trait

• Includes ability to plug in allocators

• Developer and tuner don’t need to know how, but it’s transparent and controllable

• Scheduler can make use of just what’s enumerated as supported on a given platform

Make increasing capabilities more accessible

6
DoE CoE Perf Portability Workshop 8/22/17

__constant__ double const_values[100];

double fixed_value[100]; int size2 =

100*sizeof(double);

double *buffer1, *buffer2;

// allocation

cudaMalloc((void**)&buffer1, size) != cudaSuccess);

buffer2 = malloc(size);

// data transfer

cudaMemcpy(buffer1, buffer2, size,

cudaMemcpyHostToDevice);

cudaMemcpyToSymbol(const_values, fixed_values, size2, 0,

cudaMemcpyHostToDevice));

<running kernels>

// data deallocation

cudaFree(buffer1);

free(buffer2);

MEMORY

Different flavors of APIs

Significant code changes if we
decide to put const_values
array in global memory.

What if
buffer2

should be
allocated on a
different
device (like
Xeon PHI,

FPGA)?

What if our
heterogenous
system needs to do
above operations at
runtime?

7
DoE CoE Perf Portability Workshop 8/22/17

IN HiHAT
// Setup code can be tailored for target resources

// Define memory spaces in our system

hhuMkMemTrait(…, HH_NVM, &mem_trait_nvm);

hhuMkMemTrait(…, HH_HBM, &mem_trait_hbm);

hhuMkMemTrait(…, HH_DRAM, &mem_trait_dram);

size_t offset1 = offset2 = 0;

trait = cuda_is_available ?

mem_trait_hbm : mem_trait_dram;

hhuAlloc(size, mem_trait_nvm, &data_view1, …);

hhuAlloc(size, trait, & data_view2, …);

// Usage in computational loops is target agnostic

// No notion of memory type or device type

hhuCopy(data_view2, offset2, data_view1, offset1, size,

…);

// Free all the allocated resources on all devices

hhuClean(…);

Different memory kinds:
DDR, HBM, NVM, CONST

Different devices:
CPU, GPU, FPGA

8

User interfaces

Target implementations

HiHAT is at the boundary

https://pixabay.com/en/hats-fedora-hat-manufacture-stack-829509/

http://www.freepik.com/free-icon/wait_871210.htm

target agnostic

target specific

9
DoE CoE Perf Portability Workshop 8/22/17

RELATIONSHIP TO OTHER SYSTEMS

• Beneath user-facing abstractions

• Runtimes: Kokkos, Raja, …

• User-facing memory abstractions: Chai & Sidre on Umpire; SICM, OpenMP, libmemkind?

• Part of HiHAT project

• Implementations plug in from below

• mmap, libnuma/numactl/mbind, hwloc, OS support, TAPIOCA, libpmem

• cnmem, tcmalloc, jemalloc, cudaMalloc, cudaMallocManaged, …

Come to memory breakout this afternoon to see layered Venn diagram

11
DoE CoE Perf Portability Workshop 8/22/17

TRAITS

Semantics

• Size

• Usage/access pattern: read only, writable; [random, streamed]; ld/st vs. block

Performance

• Device kinds: NVM, DDR, HBM/MCDRAM, SW managed, specialized buffers

• State: materialized, affinitized; pinned; valid, cleared, dirty

• Management: blocking, async, deferred; unified; policies (locality, alloc, coherence)

• Data layout: aligned, {dimensions, ranks, stride, block size, …}

Declare fundamental and accidental properties

12
DoE CoE Perf Portability Workshop 8/22/17

DATA VIEWS

• Logical abstraction of program variable with declared traits

• Programmer cares about a set of elements in data collection, declares a few usage hints

• Tuner cares about traits that influence performance

• Allocation

• Pass in traits, resources, where address get stored; get back a handle to data view

• Implementation invokes allocator that’s registered for those resources, enforces traits

• Deferred materialization can overlap long-latency pinning, affinitization, etc.

• Deferred allocation enables use of temporary buffers

• Registration

• Pass in traits, resources, address; get back a handle to data view

• Getters for all traits, setters for mutable traits (migrate, pin, relayout?, etc.)

Data collection + metadata

13
DoE CoE Perf Portability Workshop 8/22/17

RESOURCE ENUMERATION

• Goals

• What’s there – enumerate it once, avoid double coverage

Goals and Expectations

14
DoE CoE Perf Portability Workshop 8/22/17

DevKind DevHndl MemKind MemHndl

RESOURCE ENUMERATION
Device and memory hierarchy

15
DoE CoE Perf Portability Workshop 8/22/17

RESOURCE ENUMERATION

• Goals

• What’s there – enumerate it once, avoid double coverage

• How it’s connected – number and kinds and characteristics of links

Goals and Expectations

16
DoE CoE Perf Portability Workshop 8/22/17

RESOURCE ENUMERATION

• Goals

• What’s there – enumerate it once, avoid double coverage

• How it’s connected – number and kinds and characteristics of links

• Cost models – access characteristics, for unloaded and shared use

• Expectations

• Core set of basic enumerations of what’s there

• Extended, target-specific enumeration of add’l features, e.g. connectivity, costs, order

• Enumeration informs cost models, cost models are specialized for each scheduler

Goals and Expectations

Core Extended

Implementations

Abstractions

Cost

model
Scheduler

Abstractions

19
DoE CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS (MO) APPLICATION

• Compute wavefunction amplitudes on a grid for visualization
• Evaluate linear combination of Gaussian contractions (polynomials) at

each grid point, function of distance from atoms
• Algorithm made arithmetic bound via fast on-chip memory systems
• Three different algorithms for different memory structures:

• GPU constant memory
• Shared memory tiling
• L1 global memory cache

• Representative of a variety of other grid-oriented algorithms, stencils
• Use of special GPU hardware features, APIs helped drive completeness

of HiHAT proof-of-concept implementation already at an early stage

20
DoE CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS PERFORMANCE

• Performance of MO
algorithm on HiHAT User
Layer PoC implementation
closely tracks CUDA
performance.

• Spans x86, POWER and
Tegra ARM CPUs

21
DoE CoE Perf Portability Workshop 8/22/17

PORTABILITY ON MO
Mapping between CUDA and HiHAT

• Time to port MO: 90 minutes

• HiHAT has fewer unique APIS (6 vs. 10)

• HiHAT has fewer static API calls (30 vs. 38)

• Accelerate optimization space exploration

• Also enhance coding productivity

22
DoE CoE Perf Portability Workshop 8/22/17

WHAT’S NEXT

• Top down: Usage requirements

• Applications, runtimes, programming models (e.g. OpenMP)

• User-facing memory abstractions: Chai & Sidre on Umpire; SICM, OpenMP, libmemkind?

• Bottom up: Expose the goodness of available HW and SW implementations

• mmap, libnuma/numactl/mbind, hwloc, OS support, TAPIOCA, libpmem

• cnmem, tcmalloc, jemalloc, cudaMalloc, cudaMallocManaged, …

• Proofs of concept

• Implement and try it out

• Can build on top of open source HiHAT infrastructure

