A declarative approach to managi

CJ Newburn, Principal HPC Architect for Comp

OUTLINE

Portability challenges
Declarative vs. imperative
Abstraction

Traits

Data views

Enumeration

Results

What’s next

DoE CoE Perf Portability Workshop 8/22/17

PORTABILITY CHALLENGES: MEMORY

Heterogeneity of
Device kinds: NVM, DDR, HBM, SW managed, specialized buffers

Characteristics: speeds & feeds - asymmetry, capacity, connectivity, read only vs. writable

Archival vs. scratch, temporary staging vs. enduring

Streaming vs. random access, shared vs. exclusive/dirty

Data layout, affinity, pinning, ...

Management: many pools, different allocation policies

3
DoE CoE Perf Portability Workshop 8/22/17

DECLARATIVE VS. IMPERATIVE

Tease apart the roles of developer, tuner and target expert

Declarative
What, not how or when or who
Software engineering: Can be outside of computation body
Can be abstracted, then plug in best-available implementation
Imperative
How, when, who
Harder to maintain: sprinkled throughout computation

Implementation is explicitly coded

DoE CoE Perf Portability Workshop 8/22/17

ABSTRACTION

Declare
Runtime asked to make it so - up front (may be immutable) or incrementally (mutable)
User already made it so, just inform the runtime or other parts of the program
Extensible, tunable

Implementations can be plugged in for retargetability
For every new memory resource, for every new memory trait
Includes ability to plug in allocators

Developer and tuner don’t need to know how, but it’s transparent and controllable

Scheduler can make use of just what’s enumerated as supported on a given platform

DoE CoE Perf Portability Workshop 8/22/17

Significant code changes if we

MEMO RY decide to put const values

array in global memory.

__constant _ double const values[100];
double fixed value[100]; int size2 =
100*sizeof (double) ;

double *bufferl, *buffer?2;

What if // allocation
buffer? cudaMalloc ((void**) sbufferl, size) != cudaSuccess); AliEEEfEellle

heterogenous

buffer2 = 11 '
Should be u er ma OC(Slze)

system needs to do
size, above operations at

s, fixed values, size2 runtime?
cudaMemgpyHostToDevice)) ;

o] =sRelal-l // data transfer
cudaMemcpy (bufferl, buffer

] _ cudaMemcpyHostToDevice) ;
device (like cudaMemcpyToSymbol (const valu&
Xeon PHI,

FPGA)?

N

different

<running kernels>

Different flavors of APIs
// data deallocation
cudaFree (bufferl);
free (buffer?2);

DoE CoE Perf Portability Workshop 8/22/17

IN HIHAT

// Setup code can be tailored for target resources
// Define memory spaces in our system
hhuMkMemTrait (.., HH NVM, &mem trait nvm);
hhuMkMemTrait (.., HH HBM, &mem trait hbm) ;
hhuMkMemTrait (.., HH DRAM, &mem trait dram) ;BIRFL=ia=iafianl=inalela’s dlale s
size t offsetl = offset?2 = 0;
trait = cuda is available ? DDR, HBM, NVM, CONST
mem trait hbm : mem trait dram;

Different devices:

hhuhlloc(size, mem_trait nvm, &data viewl, HeZiUENE|zIURN=IETA
hhuAlloc(size, trait, & data view2, .);

// Usage in computational loops is target agnostic
// No notion of memory type or device type
hhuCopy (data view2, offset2, data viewl, offsetl, size,

)y

// Free all the allocated resources on all devices
hhuClean(...) ;

DoE CoE Perf Portability Workshop 8/22/17

target agnostic

HiHAT is at the boundary

target specific

Tarnget implementations

RELATIONSHIP TO OTHER SYSTEMS

Beneath user-facing abstractions
Runtimes: Kokkos, Raja, ...

User-facing memory abstractions: Chai & Sidre on Umpire; SICM, OpenMP, libmemkind?
Part of HIHAT project
Implementations plug in from below

mmap, libnuma/numactl/mbind, hwloc, OS support, TAPIOCA, libpmem

cnmem, tcmalloc, jemalloc, cudaMalloc, cudaMallocManaged, ...

DoE CoE Perf Portability Workshop 8/22/17

TRAITS

Semantics
Size
Usage/access pattern: read only, writable; [random, streamed]; ld/st vs. block

Performance
Device kinds: NVM, DDR, HBM/MCDRAM, SW managed, specialized buffers

State: ; valid, cleared, dirty

Management: blocking, async, deferred; X (locality, alloc, coherence)

Data layout: aligned, {dimensions, ranks, stride, block size, ...}

11
DoE CoE Perf Portability Workshop 8/22/17

DATA VIEWS

Logical abstraction of program variable with declared traits
Programmer cares about a set of elements in data collection, declares a few usage hints
Tuner cares about traits that influence performance

Allocation
Pass in traits, resources, where address get stored; get back a handle to data view
Implementation invokes allocator that’s registered for those resources, enforces traits
Deferred materialization can overlap long-latency pinning, affinitization, etc.
Deferred allocation enables use of temporary buffers

Registration
Pass in traits, resources, address; get back a handle to data view

Getters for all traits, setters for mutable traits (migrate, pin, relayout?, etc.)

12
DoE CoE Perf Portability Workshop 8/22/17

RESOURCE ENUMERATION

Goals

What’s there - enumerate it once, avoid double coverage

DoE CoE Perf Portability Workshop 8/22/17

13

RESOURCE ENUMERATION

Device and memory hierarchy

_—_se
-

’

\

’

\

S

e

-

DevKind DevHndl MemKind MemHndl

DoE CoE Perf Portability Workshop 8/22/17

— @gp——O
— @O\

-

\»

P Saminll S

A\ 4

14

RESOURCE ENUMERATION

Goals
What’s there - enumerate it once, avoid double coverage

How it’s connected - number and kinds and characteristics of links

DoE CoE Perf Portability Workshop 8/22/17

15

Abstractions

RESOURCE ENUMERATION g -
Scheduler
 Exended_

Goals and Expectations model
Goals
Extended

Core

What’s there - enumerate it once, avoid double coverage

How it’s connected - number and kinds and characteristics of links

Implementations

Cost models - access characteristics, for unloaded and shared use
Expectations
Core set of basic enumerations of what’s there
Extended, target-specific enumeration of add’l features, e.g. connectivity, costs, order

Enumeration informs cost models, cost models are specialized for each scheduler

16
DoE CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS (MO) APPLICATION

Compute wavefunction amplitudes on a grid for visualization
Evaluate linear combination of Gaussian contractions (polynomials) at
each grid point, function of distance from atoms

Algorithm made arithmetic bound via fast on-chip memory systems

Three different algorithms for different memory structures:

GPU constant memory
Shared memory tiling
L1 global memory cache

Representative of a variety of other grid-oriented algorithms, stencils
Use of special GPU hardware features, APIs helped drive completeness
of HiHAT proof-of-concept implementation already at an early stage

19

DoE CoE Perf Portability Workshop 8/22/17

MOLECULAR ORBITALS PERFORMANCE

Performance of MO
algorithm on HiHAT User
Layer PoC implementation
closely tracks CUDA
performance.

Spans x86, POWER and
Tegra ARM CPUs

HIHAT API GAINS FOR MOLECULAR ORBITALS APPLICATION

DoE CoE Perf Portability Workshop 8/22/17

Molecular Orbital Algorithm, Mem Kind Speedup HiHAT
vs. ShMem | API gain

Xx86 SharedMem HiHAT 1.000x 1.028x

+ L1CachedGIbIMem HiHAT 1.088x 1.025x

GPU ConstMem HiHAT 1.472x 1.031x

PWR | SharedMem HiHAT 1.000x (0.999x

+ L1CachedGIbIMem HiHAT 1.116x 1.001x

GPU ConstMem HiHAT 1.534x (0.983x

ARM | SharedMem HiHAT 1.000x -

+ L1CachedGIbIMem HiHAT 1.094x -

GPU ConstMem HiHAT 1.059x -
NoPin-SharedMem HiHAT 2.349x (0.995x
NoPin-L1CachedGIlbIMem HiHAT | 2.561x (0.984x
NoPin-ConstMem HiHAT 2.562x (0.998x

20

PORTABILITY ON MO

TARGET-SPECIFIC APl USAGE IN MOLECULAR ORBITALS APPLICATION

| Category | Original CUDA | Ported to HIHAT ||
Invoke <L 3 | hhulnvoke() 3
Data mvt cudaMemcpy() 7 | hhuCopy() 7
cudaMemcpyToSymbol() 7 | hhuCopy() 2
Time to port MO: Configuration || cudaSetDeviceFlags() I | (config) 0
cudaFuncSetCacheConfig() | 2 | (config) 0
: : Data mgt, cudaMalloc() 7 | hhuAlloc() 7
HIHAT haS fewer unique APIS (6 vs. 10) minimal cudaMallocHost() I | hhuAlloc() 1
. . cudaHostAlloc() 1 | hhuAlloc() |
[symbols] - | hhuRegMem() 7
Data mgt, cudaFree() 7 | hhuFree() (7)
Accelerate optimization space exploration eliminatable cudaFreeHost() 2 | hhuFree() (2)
[symbols] - | hhuDeregMem() | (7)
Also enhance coding productivity —
| Coordination || - 0 | hhuSyncAll) | T ||
Totals
static 144343494940 38| 9434+0+16+16+1 | 43
static min’l 144343494940 38| 9434+0+17+40 +1 | 30
unique 2+ 142454040 10] 1+14042 42 +1 | 7
unique min’| 2+ 142454040 10 T+14043 40 +1 | 6
21

DoE CoE Perf Portability Workshop 8/22/17

WHAT’S NEXT

Top down: Usage requirements
Applications, runtimes, programming models (e.g. OpenMP)

User-facing memory abstractions: Chai & Sidre on Umpire; SICM, OpenMP, libmemkind?

Bottom up: Expose the goodness of available HW and SW implementations
mmap, libnuma/numactl/mbind, hwloc, OS support, TAPIOCA, libpmem
cnmem, tcmalloc, jemalloc, cudaMalloc, cudaMallocManaged, ...

Proofs of concept
Implement and try it out

Can build on top of open source HiHAT infrastructure

22

DoE CoE Perf Portability Workshop 8/22/17

