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Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations
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“Iterate until converged” is an almost universal pattern

gemv

reduce

axpy

reduce

axpy

Convert loop body
into a task graph

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do

  launch_graph(A, x, r, p, rsold)

  synchronize()
  residual = copy_from_gpu()

 while(residual > 1e-8)

 return x
end

Task graph launch optimizes loop body execution
but then must return to CPU to evaluate loop again

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

gemv

reduce

axpy

reduce

axpy

Convert entire loop into
a task graph using

new “conditional nodes”

WHILE



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

gemv

reduce

axpy

reduce

axpy

Convert entire loop into
a task graph using

new “conditional nodes”

WHILE function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

 launch_conditional_graph(A, x, r, p,
                             rsold, 1e-8)

 return x
end

Entire CG solve runs to completion on GPU
using just one single graph launch
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Conditional graph nodes available from CUDA 12.4



Conditional IF Node Example

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

Device function for Node A:

__global__ void nodeA(cudaGraphConditionalHandle handle, …) {
   …
 cudaGraphSetConditional(handle, value);
}

• Node A must set the condition before Node B is executed

• Application specific code would perform calculations and set ‘value’



Conditional IF Node Example

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

cudaGraph_t graph;
cudaGraphCreate(&graph, 0);

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate( &handle, graph );

cudaGraphAddNode( &nodeA, graph, NULL, 0, &params );    Parameter setup omitted for brevity

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle  = handle;
cParams.conditional.type    = cudaGraphCondTypeIf;
cParams.conditional.size    = 1;

cudaGraphAddNode( &nodeB, graph, &nodeA, 1, &cParams );

cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];   Body graph returned in params

cudaGraphAddNode( &bodyNodeA, bodyGraph, NULL, 0, &params );  Parameter setup omitted



Conditional WHILE Nodes

• Conditional body graph is executed until the condition is zero

• Value will default to 1 to implement a ‘Do-While’ loop

• Conditional body graph is populated using stream capture

• Complete examples available in the CUDA Samples git repo:

     http://nv/conditionalsamples

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

3 Node Graph with a Conditional WHILE Node

http://nv/conditionalsamples


Conditional Nodes

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate( &handle, graph, 1, cudaGraphCondAssignDefault );

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;
cParams.conditional.type   = cudaGraphCondTypeWhile;
cParams.conditional.size   = 1;
cudaGraphAddNode( &nodeB, graph, &nodeA, 1, &cParams );

cudaGraph_t  bodyGraph = cParams.conditional.phGraph_out[0];
cudaStreamCreate( &captureStream );
    
cudaStreamBeginCaptureToGraph( captureStream, bodyGraph, … );

loopKernel<<<1, 1, 0, captureStream>>>(handle, …);
    
cudaStreamEndCapture(captureStream, nullptr);
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