
CUDA Graphs Conditional Nodes
Stephen Jones, NVIDIA

HiHAT working group meeting, August  20th  2024



Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations



Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body

gemv

reduce

axpy

reduce

axpy

Convert loop body
into a task graph



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body

gemv

reduce

axpy

reduce

axpy

Convert loop body
into a task graph

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do

  launch_graph(A, x, r, p, rsold)

 while(residual > 1e-8)

 return x
end

Task graph launch optimizes loop body execution



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body

gemv

reduce

axpy

reduce

axpy

Convert loop body
into a task graph

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do

  launch_graph(A, x, r, p, rsold)

 while(residual > 1e-8)

 return x
end

Task graph launch optimizes loop body execution



Data-Dependent Execution
“Iterate until converged” is an almost universal pattern

gemv

reduce

axpy

reduce

axpy

Convert loop body
into a task graph

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do

  launch_graph(A, x, r, p, rsold)

  synchronize()
  residual = copy_from_gpu()

 while(residual > 1e-8)

 return x
end

Task graph launch optimizes loop body execution
but then must return to CPU to evaluate loop again

function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

Loop
body



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

gemv

reduce

axpy

reduce

axpy

Convert entire loop into
a task graph using

new “conditional nodes”

WHILE



function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

    do
  Ap = A * p
  alpha = rsold / (Ap * transpose(p))
  x = x + (alpha * p)
  r = r – (alpha * Ap)
  rsnew = r * transpose(r)

  residual = sqrt(rsnew)
  p = r + (rsnew / rsold) * p
  rsold = rsnew
 while(residual > 1e-8)

 return x
end

Data-Dependent Execution On The GPU
“Iterate until converged” is an almost universal pattern

Pseudo-code of the conjugate gradient algorithm
for solving systems of linear equations

Main
loop

gemv

reduce

axpy

reduce

axpy

Convert entire loop into
a task graph using

new “conditional nodes”

WHILE function ConjugateGradient(A, b, x):
 r = b – A * x
 p = r
 rsold = r * transpose(r)

 launch_conditional_graph(A, x, r, p,
                             rsold, 1e-8)

 return x
end

Entire CG solve runs to completion on GPU
using just one single graph launch



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

The subgraph inside an “if” node
runs if its condition is true at runtime

If condition is not true, node is skipped

IF

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

The subgraph inside an “if” node
runs if its condition is true at runtime

If condition is not true, node is skipped

IF

Conditional nodes may
be nested to any depth

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

The subgraph inside an “if” node
runs if its condition is true at runtime

If condition is not true, node is skipped

IF

Conditional nodes may
be nested to any depth

WHILE

“while” is like “if” except it re-
evaluates the while on completion

This allows the while body
to set its own condition

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

The subgraph inside an “if” node
runs if its condition is true at runtime

If condition is not true, node is skipped

IF

Conditional nodes may
be nested to any depth

WHILE

“while” is like “if” except it re-
evaluates the while on completion

This allows the while body
to set its own condition

A

E

if(y)if(x) if(z)

Conditional nodes are just graph nodes
so multiple “if”s can function like “switch”

Not limited to a single true condition:
zero, one, some or all conditions may run

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved



Conditional Graph Nodes
A new type of graph node that contains a subgraph which runs if() or while() a condition is true

A

B

C

E

D

The subgraph inside an “if” node
runs if its condition is true at runtime

If condition is not true, node is skipped

IF

Conditional nodes may
be nested to any depth

WHILE

“while” is like “if” except it re-
evaluates the while on completion

This allows the while body
to set its own condition

A

E

if(y)if(x) if(z)

Conditional nodes are just graph nodes
so multiple “if”s can function like “switch”

Not limited to a single true condition:
zero, one, some or all conditions may run

A conditional 
node is just 

another type of 
graph node, so 

graph structure 
is preserved

Conditional graph nodes available from CUDA 12.4



Conditional IF Node Example

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

Device function for Node A:

__global__ void nodeA(cudaGraphConditionalHandle handle, …) {
   …
 cudaGraphSetConditional(handle, value);
}

• Node A must set the condition before Node B is executed

• Application specific code would perform calculations and set ‘value’



Conditional IF Node Example

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

cudaGraph_t graph;
cudaGraphCreate(&graph, 0);

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate( &handle, graph );

cudaGraphAddNode( &nodeA, graph, NULL, 0, &params );    Parameter setup omitted for brevity

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle  = handle;
cParams.conditional.type    = cudaGraphCondTypeIf;
cParams.conditional.size    = 1;

cudaGraphAddNode( &nodeB, graph, &nodeA, 1, &cParams );

cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];   Body graph returned in params

cudaGraphAddNode( &bodyNodeA, bodyGraph, NULL, 0, &params );  Parameter setup omitted



Conditional WHILE Nodes

• Conditional body graph is executed until the condition is zero

• Value will default to 1 to implement a ‘Do-While’ loop

• Conditional body graph is populated using stream capture

• Complete examples available in the CUDA Samples git repo:

     http://nv/conditionalsamples

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

3 Node Graph with a Conditional WHILE Node

http://nv/conditionalsamples


Conditional Nodes

Dynamic Control Flow in CUDA Graphs with Conditional Nodes

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate( &handle, graph, 1, cudaGraphCondAssignDefault );

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;
cParams.conditional.type   = cudaGraphCondTypeWhile;
cParams.conditional.size   = 1;
cudaGraphAddNode( &nodeB, graph, &nodeA, 1, &cParams );

cudaGraph_t  bodyGraph = cParams.conditional.phGraph_out[0];
cudaStreamCreate( &captureStream );
    
cudaStreamBeginCaptureToGraph( captureStream, bodyGraph, … );

loopKernel<<<1, 1, 0, captureStream>>>(handle, …);
    
cudaStreamEndCapture(captureStream, nullptr);


	Slide 1: CUDA Graphs Conditional Nodes
	Slide 2: Data-Dependent Execution
	Slide 3: Data-Dependent Execution
	Slide 4: Data-Dependent Execution
	Slide 5: Data-Dependent Execution
	Slide 6: Data-Dependent Execution
	Slide 7: Data-Dependent Execution
	Slide 8: Data-Dependent Execution
	Slide 9: Data-Dependent Execution On The GPU
	Slide 10: Data-Dependent Execution On The GPU
	Slide 11: Data-Dependent Execution On The GPU
	Slide 12: Conditional Graph Nodes
	Slide 13: Conditional Graph Nodes
	Slide 14: Conditional Graph Nodes
	Slide 15: Conditional Graph Nodes
	Slide 16: Conditional Graph Nodes
	Slide 17: Conditional Graph Nodes
	Slide 18: Dynamic Control Flow in CUDA Graphs with Conditional Nodes
	Slide 19: Dynamic Control Flow in CUDA Graphs with Conditional Nodes
	Slide 20: Dynamic Control Flow in CUDA Graphs with Conditional Nodes
	Slide 21: Dynamic Control Flow in CUDA Graphs with Conditional Nodes

