
CUDA GRAPHS DYNAMIC CONTROL FLOW, SEPTEMBER 2023
STEPHEN JONES, NVIDIA

DYNAMIC CONTROL FLOW IN GRAPHS

GPU

CPU

Copy

Heterogeneous
Execution

A

D

B C

Dynamic
Control Flow

X

?

Iterative
Loops

X

Z

Y

A

D

B C

In-Kernel
Graph Launch

Inline Memory
Allocation

A

D

B C

alloc

free

GRAPH LAUNCH FROM A GPU KERNEL

CPU portion

void main() {
 cudaGraphCreate(&G1);
 // Build graph G1 = XYZ
 cudaGraphInstantiate(G1);

 cudaGraphCreate(&G2);
 // Build graph G2 = ABCD
 cudaGraphInstantiate(G2, DeviceLaunch);

 cudaGraphLaunch(G1, ...);
}

__global__ void Y(cudaDeviceGraph_t G2) {
 cudaGraphLaunch(G2, ...);
}

GPU portion

cdp_graphs.cu

Device-side graph launch

Graph G1

Graph G2

A

D

B C

X

Y

Z

ENCAPSULATION FOR DEVICE-SIDE GRAPH LAUNCH
Parent graphs are monolithic with respect to dependency resolution

Graph encapsulation boundary is the whole launching graph

Graph launch cannot create a new dependency within the parent graph (i.e. no fork/join parallelism inside a graph)

Graph

G1

Graph

G2

A

D

B C

X

Y

Z

Kernel1

Kernel2

Graph G2 becomes a

dependency of

Kernel2, not of

graph node Z

DEVICE GRAPH LAUNCH NAMED STREAMS
Identical semantics to dynamic parallelism single-kernel launch named streams, but at whole-graph granularity

Fire-and-Forget

Child work is launched

concurrently with parent

Graph G2 now depends

on G1 and child work

A

D

B C

X

Y

Graph

G1

Z

W

Graph

G2

A

D

B C

X

Y

Z

W

Tail Launch

Child work is launched

sequentially after parent

Graph G2 now depends

on child work (which in

turn depends on parent)

UPCOMING NEW LAUNCH TYPE: “SIBLING” LAUNCH
Breaks parent-graph encapsulation boundary, creating dependency on layer above

X

Y

A

D

B C

Sibling

Child work is launched

concurrently with parent

Child work becomes a

dependency of parent’s parent

but does not block re-launch

of scheduler graph

Predecessor
work

Successor
work

Scheduler graph re-launches
itself as a tail launch

void init() {
 cudaGraphCreate(G1);
 ... // Set up graph G1

 cudaGraphCreate(G2);
 ... // Set up graph G2

 cudaGraphCreate(G3);
 ... // Set up graph G3

 cudaGraphCreate(G4);
 ... // Set up graph G4

 cudaGraphCreate(G5);
 ... // Set up graph G5

}

EXAMPLE: RUN-TIME DYNAMIC WORK SCHEDULING

G1 G2 G3 G4 G5

Create multiple graphs in host code

during program init

EXAMPLE: RUN-TIME DYNAMIC WORK SCHEDULING

__global__ void scheduler(...) {
 Packet data = receivePacket(...);

 switch(data.type) {
 case 1:
 cudaGraphLaunch(G1, ...);
 break;
 case 2:
 cudaGraphLaunch(G2, ...);
 break;
 case 3:
 cudaGraphLaunch(G3, ...);
 break;
 case 4:
 cudaGraphLaunch(G4, ...);
 break;
 case 5:
 cudaGraphLaunch(G5, ...);
 break;
 }

 // Re-launch the scheduler to run after processing
 cudaGraphLaunch(scheduler, TailLaunch, ...);
}

GPU

Incoming data packets

Select graph based

on packet type

Launch graph

to process data

Pre-initialized

device graphs

Scheduler kernel executing on device

4.5

9.9

0

2

4

6

8

10

12

Launch from Device Launch from Host

La
u

n
ch

 t
im

e
 in

 M
ic

ro
se

co
n

d
s

Graph Launch from Host and Device
(Straight-line graph, Graph length=100, RTX A5000)

THE DEVICE-LAUNCH ADVANTAGE

Scheduler kernel executing on device

2.2x

__global__ void scheduler(...) {
 Packet data = receivePacket(...);

 switch(data.type) {
 case 1:
 cudaGraphLaunch(G1, ...);
 break;
 case 2:
 cudaGraphLaunch(G2, ...);
 break;
 case 3:
 cudaGraphLaunch(G3, ...);
 break;
 case 4:
 cudaGraphLaunch(G4, ...);
 break;
 case 5:
 cudaGraphLaunch(G5, ...);
 break;
 }

 // Re-launch the scheduler to run after processing
 cudaGraphLaunch(scheduler, TailLaunch, ...);
}

COMING SOON FOR DEVICE-GRAPH LAUNCH

1. Update of node parameters from a GPU kernel

▪ This is known to be critical for graph re-use, and is assumed to be
important for iterating from within a kernel as well

2. Various performance optimisations, especially related to CPU cost of
launch

__global__ void scheduler(...) {
 Packet data = receivePacket(...);
 Graph G;

 switch(data.type) {
 case 1:
 cudaGraphNodeUpdate(G1.node(1), data);
 cudaGraphLaunch(G1, ...);
 break;
 case 2:
 cudaGraphNodeUpdate(G2.node(1), data);
 cudaGraphLaunch(G2, ...);
 break;
 case 3:
 cudaGraphNodeUpdate(G3.node(1), data);
 cudaGraphLaunch(G3, ...);
 break;
 case 4:
 cudaGraphNodeUpdate(G4.node(1), data);
 cudaGraphLaunch(G4, ...);
 break;
 case 5:
 cudaGraphNodeUpdate(G5.node(1), data);
 cudaGraphLaunch(G5, ...);
 break;
 }

 // Re-launch the scheduler to run after processing
 cudaGraphLaunch(scheduler, TailLaunch, ...);
}

CONDITIONAL CONTROL FLOW WITHIN A GRAPH

Conditional nodes come in two flavours:

▪ IF condition for single-pass evaluation/activation

▪ WHILE loops which execute the subgraph repeatedly

Runtime Graph
Node Activation

Iterative
“While” Loops

X

Y

A

D

B C

CONDITIONAL CONTROL FLOW WITHIN A GRAPH

Graph conditionals operate by embedding sub-graphs within the main
graph, as “conditional nodes”

1. Start by creating a conditional graph node – creation returns a handle to
an empty graph

2. Populate this graph either explicitly or via cudaStreamCaptureToGraph()

3. Conditional nodes/subgraphs MAY be nested

4. The boolean activation value for a conditional node is associated with a
conditional handle, which allows setting of this value by a GPU kernel

▪ Pass the handle to an upstream kernel to allow that kernel to set the value
and thus determine if the conditional node executes or not

Runtime Graph
Node Activation

X

Y

Z

A

D

B C

“IF” CONDITIONAL EXAMPLE

A

D

B C

__global__ void A(cudaGraphConditionalHandle handleB,
 cudaGraphConditionalHandle handleC) {
 ...
 // “value” here is true/false.
 // When true, the conditional node will run
 cudaGraphSetConditional(handleB, valueB);
 cudaGraphSetConditional(handleC, valueC);
 ...
}

void init() {
 cudaGraphConditionalHandle handle;
 cudaGraphConditionalHandleCreate(&handle, graph);

 // Use a kernel upstream of the conditional to set the handle value
 cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };
 params.kernel.func = (void *)setHandle;
 params.kernel.gridDim.x = 1;
 params.kernel.blockDim.x = 1;
 params.kernel.kernelParams = kernelArgs;
 kernelArgs[0] = &handle;
 cudaGraphAddNode(&node, graph, NULL, 0, ¶ms);

 cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
 cParams.conditional.handle = handle;
 cParams.conditional.type = cudaGraphCondTypeIf;
 cParams.conditional.size = 1;
 cudaGraphAddNode(&node, graph, &node, 1, &cParams);

 cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];

 // Populate the body of the conditional node
 ...
 cudaGraphAddNode(&node, bodyGraph, NULL, 0, ¶ms);

 cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
 cudaGraphLaunch(graphExec, 0);
}

“IF” CONDITIONAL EXAMPLE

A

D

B C

__global__ void A(cudaGraphConditionalHandle handleB,
 cudaGraphConditionalHandle handleC) {
 ...
 // “value” here is true/false.
 // When true, the conditional node will run
 cudaGraphSetConditional(handleB, valueB);
 cudaGraphSetConditional(handleC, valueC);
 ...
}

void init() {
 cudaGraphConditionalHandle handle;
 cudaGraphConditionalHandleCreate(&handle, graph);

 // Use a kernel upstream of the conditional to set the handle value
 cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };
 params.kernel.func = (void *)setHandle;
 params.kernel.gridDim.x = 1;
 params.kernel.blockDim.x = 1;
 params.kernel.kernelParams = kernelArgs;
 kernelArgs[0] = &handle;
 cudaGraphAddNode(&node, graph, NULL, 0, ¶ms);

 cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
 cParams.conditional.handle = handle;
 cParams.conditional.type = cudaGraphCondTypeIf;
 cParams.conditional.size = 1;
 cudaGraphAddNode(&node, graph, &node, 1, &cParams);

 cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];

 // Populate the body of the conditional node
 ...
 cudaGraphAddNode(&node, bodyGraph, NULL, 0, ¶ms);

 cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
 cudaGraphLaunch(graphExec, 0);
}

“IF” CONDITIONAL EXAMPLE

A

D

B C

__global__ void A(cudaGraphConditionalHandle handleB,
 cudaGraphConditionalHandle handleC) {
 ...
 // “value” here is true/false.
 // When true, the conditional node will run
 cudaGraphSetConditional(handleB, valueB);
 cudaGraphSetConditional(handleC, valueC);
 ...
}

void init() {
 cudaGraphConditionalHandle handle;
 cudaGraphConditionalHandleCreate(&handle, graph);

 // Use a kernel upstream of the conditional to set the handle value
 cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };
 params.kernel.func = (void *)setHandle;
 params.kernel.gridDim.x = 1;
 params.kernel.blockDim.x = 1;
 params.kernel.kernelParams = kernelArgs;
 kernelArgs[0] = &handle;
 cudaGraphAddNode(&node, graph, NULL, 0, ¶ms);

 cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
 cParams.conditional.handle = handle;
 cParams.conditional.type = cudaGraphCondTypeIf;
 cParams.conditional.size = 1;
 cudaGraphAddNode(&node, graph, &node, 1, &cParams);

 cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];

 // Populate the body of the conditional node
 ...
 cudaGraphAddNode(&node, bodyGraph, NULL, 0, ¶ms);

 cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
 cudaGraphLaunch(graphExec, 0);
}

“WHILE” CONDITIONAL EXAMPLE
CUDA Graphs are no longer a DAG

Conditional sub-graphs may not contain nodes which do not execute from
within the GPU SM

Permitted

▪ All GPU kernels

▪ Memory copies between device memory, or to pinned host memory

▪ Memset on device memory or pinned host memory

▪ Child-graph nodes which satisfy these requirements

▪ Other conditional nodes

Not Permitted

▪ Memcpy operations to addresses not directly accessible by the GPU

▪ Memory allocation nodes

▪ Nodes which execute on a different GPU

X

Y

P

S

Q R

__global__ void S(cudaGraphConditionalHandle handle, ...) {
 static int count = 10;
 cudaGraphSetConditional(handle, --count ? 1 : 0);
}

	Slide 1: CUDA Graphs Dynamic Control Flow, September 2023
	Slide 2: Dynamic Control Flow in Graphs
	Slide 3: Graph Launch from a GPU Kernel
	Slide 4: Encapsulation for Device-Side graph Launch
	Slide 5: Device Graph Launch Named Streams
	Slide 6: Upcoming new launch type: “Sibling” launch
	Slide 7: Example: Run-Time dynamic Work Scheduling
	Slide 8: Example: Run-Time dynamic Work Scheduling
	Slide 9: The Device-Launch Advantage
	Slide 10: Coming soon for device-graph launch
	Slide 11: Conditional Control Flow Within a Graph
	Slide 12: Conditional Control Flow Within a Graph
	Slide 13: “IF” Conditional Example
	Slide 14: “IF” Conditional Example
	Slide 15: “IF” Conditional Example
	Slide 16: “WHILE” conditional example
	Slide 17

